Details

Electrical Processes in Organic Thin Film Devices


Electrical Processes in Organic Thin Film Devices

From Bulk Materials to Nanoscale Architectures
1. Aufl.

von: Michael C. Petty

104,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 24.01.2022
ISBN/EAN: 9781119631347
Sprache: englisch
Anzahl Seiten: 480

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Electrical Processes in Organic Thin Film Devices</b> <p><b>A one-stop examination of fundamental electrical behaviour in organic electronic device architectures </b> <p>In <i>Electrical Processes in Organic Thin Film Devices: From Bulk Materials to Nanoscale Architectures</i>, distinguished researcher Michael C. Petty delivers an in-depth treatment of the electrical behaviour of organic electronic devices focused on first principles. The author describes the fundamental electrical behaviour of various device architectures and offers an introduction to the physical processes that play a role in the electrical conductivity of organic materials. <p>Beginning with band theory, the text moves on to address the effects of thin film device architectures and nanostructures. The book discusses the applications to devices currently in the marketplace, like displays, as well as those under development (transistors, solar cells, and memories). <p><i>Electrical Processes in Organic Thin Film Devices</i> also describes emerging organic thin film architectures and explores the potential for single molecule electronics and biologically inspired devices. Finally, the book also includes: <ul><li>A detailed introduction to electronic and vibrational states in organic solids, including classical band theory, disordered semiconductors, and lattice vibrations</li> <li>Comprehensive explorations of electrical conductivity, including electronic and ionic processes, carrier drift, diffusion, the Boltzmann Transport Equation, excess carriers, recombination, doping, and superconductivity</li> <li>An overview of important electro-active organic materials, like molecular crystals, charge-transfer complexes, conductive polymers, carbon nanotubes, and graphene</li> <li>Practical considerations of defects and nanoscale phenomena, including transport processes in low-dimensional systems, surfaces and interface states</li> <li>In-depth examinations of metal contacts, including ohmic contacts, the Schottky Barrier, and metal/molecule contacts</li> <li>A systematic guide to the operating principles of metal/insulator/semiconductor structures and the field effect</li> <li>A set of problems (with solutions on-line) for each chapter of the book</li></ul> <p>Perfect for electronics developers and researchers in both industry and academia who study and work with molecular and nanoscale electronics, <i>Electrical Processes in Organic Thin Film Devices</i> also deserves a place in the libraries of undergraduate and postgraduate students in courses on molecular electronics, organic electronics, and plastic electronics.
<p><b>Chapter 1 – Electronic and Vibrational States in Organic Solids</b></p> <p>1.1 Introduction</p> <p>1.2 Band Theory for Inorganic Single Crystals</p> <p>1.2.1 Schrödinger Wave Equation</p> <p>1.2.2 Density of Electron States</p> <p>1.2.3 Occupation of Energy States</p> <p>1.2.4 Conductors, Semiconductors and Insulators</p> <p>1.2.5 Electrons and Holes</p> <p>1.2.6 Doping</p> <p>1.3 Lattice Vibrations</p> <p>1.4 Amorphous Inorganic Semiconductors</p> <p>1.5 Organic Semiconductors</p> <p>1.5.1 Electronic Orbitals and Bands in Important Organic Compounds</p> <p>1.5.2 Molecular Crystals</p> <p>1.5.3 Polymers</p> <p>1.5.4 Charge-transfer Complexes</p> <p>1.5.5 Graphene</p> <p>1.5.6 Fullerenes and Carbon Nanotubes</p> <p>1.5.7 Doping of Organic Semiconductors</p> <p>Problems</p> <p>References</p> <p>Further Reading</p> <p><b>Chapter 2 – Electrical Conductivity: Fundamental Principles</b></p> <p>2.1 Introduction</p> <p>2.2 Classical Model</p> <p>2.3 Boltzmann Transport Equation</p> <p>2.4 Ohm’s Law</p> <p>2.5 Charge Carrier Mobility</p> <p>2.6 Equilibrium Carrier Statistics</p> <p>2.6.1 Intrinsic Conduction</p> <p>2.6.2 Carrier Generation and Recombination</p> <p>2.6.3 Extrinsic Conduction</p> <p>2.6.4 Fermi Level Position</p> <p>2.6.5 Meyer-Neldel Rule</p> <p>2.7 Excess Carriers</p> <p>2.7.1 Quasi-Fermi Level</p> <p>2.7.2 Diffusion and Drift</p> <p>2.7.3 Gradients in the Quasi-Fermi Levels</p> <p>2.7.4 Carrier Lifetime</p> <p>2.8 Superconductivity</p> <p>Problems</p> <p>References</p> <p>Further Reading</p> <p><b>Chapter 3 – Defects and Nanoscale Phenomena</b></p> <p>3.1 Introduction</p> <p>3.2 Material Purity</p> <p>3.3 Point and Line Defects</p> <p>3.4 Traps and Recombination Centres</p> <p>3.4.1 Direct Recombination</p> <p>3.4.2 Recombination via Traps</p> <p>3.5 Grain Boundaries and Surfaces</p> <p>3.5.1 Interface States</p> <p>3.6 Polymer Defects</p> <p>3.6.1 Solitons</p> <p>3.6.2 Polarons and Bipolarons</p> <p>3.7 Disordered Semiconductors</p> <p>3.8 Electron Transport in Low Dimensional Systems</p> <p>3.8.1 Two-dimensional Transport</p> <p>3.8.2 One-dimensional Transport</p> <p>3.8.3 Zero-dimensional Transport</p> <p>3.9 Nanosystems</p> <p>3.9.1 Scaling Laws</p> <p>3.9.2 Interatomic Forces</p> <p>Problems</p> <p>References</p> <p>Further Reading</p> <p><b>Chapter 4 – Electrical Contacts: Ohmic and Rectifying Behaviour</b></p> <p>4.1 Introduction</p> <p>4.2 Practical Considerations</p> <p>4.3 Neutral, Ohmic and Blocking Contacts</p> <p>4.4 Schottky Barrier</p> <p>4.4.1 Barrier Formation</p> <p>4.4.2 Image Force</p> <p>4.4.3 Current versus Voltage Behaviour</p> <p>4.4.4 Effect of an Interfacial Layer</p> <p>4.4.5 Organic Schottky Diodes</p> <p>4.5 Molecular Devices</p> <p>4.5.1 Metal/Molecule Contacts</p> <p>4.5.2 Break Junctions</p> <p>4.5.3 Molecular Rectifying Diodes</p> <p>4.5.4 Molecular Resonant Tunnelling Devices</p> <p>Problems</p> <p>References</p> <p>Further Reading</p> <p><b>Chapter 5 – Metal/Insulator/Semiconductor Devices: The Field Effect</b></p> <p>5.1 Introduction</p> <p>5.2 Ideal MIS device</p> <p>5.3 Departures from Ideality</p> <p>5.3.1 Insulator Charge and Work Function Differences</p> <p>5.3.2 Interface Traps</p> <p>5.4 Organic MIS Devices</p> <p>5.4.1 Inorganic Semiconductor/Organic Insulator Structures</p> <p>5.4.2 Organic Semiconductor Structures</p> <p>Problems</p> <p>References</p> <p>Further Reading</p> <p><b>Chapter 6 – DC Conductivity</b></p> <p>6.1 Introduction</p> <p>6.2 Electronic versus Ionic Conductivity</p> <p>6.3 Quantum Mechanical Tunnelling</p> <p>6.4 Variable Range Hopping</p> <p>6.5 Fluctuation-induced Tunnelling</p> <p>6.6 Space Charge Injection</p> <p>6.6.1 Effect of Traps</p> <p>6.6.2 Two-carrier Injection</p> <p>6.7 Schottky, Fowler-Nordheim and Poole-Frenkel Effects</p> <p>6.8 Electrical Breakdown</p> <p>6.8.1 Intrinsic Breakdown</p> <p>6.8.2 Electromechanical Breakdown</p> <p>6.8.3 Thermal Runaway</p> <p>6.8.4 Contact Instability</p> <p>6.8.5 Other Effects</p> <p>6.9 Electromigration</p> <p>6.10 Measurement of Trapping Parameters</p> <p>6.10.1 Thermally Stimulated Conductivity</p> <p>6.10.2 Capacitance Spectroscopy</p> <p>Problems</p> <p>References</p> <p>Further Reading</p> <p><b>Chapter 7 – Polarization and AC Conductivity</b></p> <p>7.1 Introduction</p> <p>7.2 Polarization</p> <p>7.2.1 Dipole Creation</p> <p>7.2.2 Permanent Polarization</p> <p>7.2.3 Piezoelectricity, Pyroelectricity and Ferroelectricity</p> <p>7.3 Conductivity at High Frequencies</p> <p>7.3.1 Displacement Current</p> <p>7.3.2 Frequency-dependent Permittivity</p> <p>7.3.3 AC Conductivity</p> <p>7.4 Impedance Spectroscopy</p> <p>7.5 AC Electrical Measurements</p> <p>7.5.1 Lock-in Amplifier</p> <p>7.5.2 Scanning Microscopy</p> <p>7.6 Electrical Noise</p> <p>Problems</p> <p>References</p> <p>Further Reading</p> <p><b>Chapter 8 – Organic Field Effect Transistors</b></p> <p>8.1 Introduction</p> <p>8.2 Physics of Operation</p> <p>8.3 Transistor Fabrication</p> <p>8.4 Practical Device Behaviour</p> <p>8.4.1 Contact Resistance</p> <p>8.4.2 Material Morphology and Traps</p> <p>8.4.3 Short Channel Effects</p> <p>8.4.4 Organic Semiconductors</p> <p>8.4.5 Gate Dielectric</p> <p>8.5 Organic Integrated Circuits</p> <p>8.6 Nanotube and Graphene FETs</p> <p>8.7 Single-electron Transistors</p> <p>8.8 Transistor-based Chemical Sensors</p> <p>8.8.1 Ion-sensitive FETs</p> <p>8.8.2 Charge-flow Transistor</p> <p>Problems</p> <p>References</p> <p>Further Reading</p> <p><b>Chapter 9 – Electronic Memory </b></p> <p>9.1 Introduction</p> <p>9.2 Memory Types</p> <p>9.3 Resistive Memory</p> <p>9.4 Organic Flash Memory</p> <p>9.5 Ferroelectric RAMs</p> <p>9.6 Spintronics</p> <p>9.7 Molecular Memories</p> <p>Problems</p> <p>References</p> <p>Further Reading</p> <p><b>Chapter 10 – Light-emitting Devices</b></p> <p>10.1 Introduction</p> <p>10.2 Light Emission Processes</p> <p>10.3 Operating Principles</p> <p>10.4 Colour Measurement</p> <p>10.5 Photometric Units</p> <p>10.6 OLED Efficiency</p> <p>10.7 Device Architectures</p> <p>10.7.1 Top- and Bottom-emitting OLEDs</p> <p>10.7.2 Electrodes</p> <p>10.7.3 Hole- and Electron-transport Layers</p> <p>10.7.4 Triplet Management</p> <p>10.7.5 Blended-layer and Molecularly-engineered Devices</p> <p>10.8 Increasing the Light Output</p> <p>10.8.1 Efficiency Losses</p> <p>10.8.2 Microlenses and Shaped Substrates</p> <p>10.8.3 Microcavities</p> <p>10.8.4 Device Degradation</p> <p>10.9 Full-colour Displays</p> <p>10.10 Organic Semiconductor Lasers</p> <p>10.11 OLED Lighting</p> <p>10.12 Light-emitting Electrochemical Cells</p> <p>10.13 Light-emitting Transistors</p> <p>Problems</p> <p>References</p> <p>Further Reading</p> <p><b>Chapter 11 – Photoconductive and Photovoltaic Devices</b></p> <p>11.1 Introduction</p> <p>11.2 Photoconductivity</p> <p>11.2.1 Optical Absorption</p> <p>11.2.2 Carrier Lifetime</p> <p>11.2.3 Photosenstivity</p> <p>11.3 Xerography</p> <p>11.4 Photovoltaic Principles</p> <p>11.4.1 Electrical Characteristics</p> <p>11.4.2 Efficiency</p> <p>11.5 Organic Solar Cells</p> <p>11.5.1 Carrier Collection</p> <p>11.5.2 Bulk Heterojunction Solar Cells</p> <p>11.5.3 Electrodes and Device Architectures</p> <p>11.5.4 Tandem Cells</p> <p>11.5.5 Upconversion</p> <p>11.5.6 Device Degradation</p> <p>11.6 Dye-sensitized Solar Cells</p> <p>11.7 Hybrid Solar Cells</p> <p>11.7.1 Polymer-Metal Oxide Devices</p> <p>11.7.2 Inorganic Semiconductor-Polymer Hole-transporter Cells</p> <p>11.7.3 Perovskite Solar Cells</p> <p>11.8 Luminescent Solar Concentrator</p> <p>11.9 Organic Photodiodes and Phototransistors</p> <p>Problems</p> <p>References</p> <p>Further Reading</p> <p><b>Chapter 12 – Emerging Devices and Systems</b></p> <p>12.1 Introduction</p> <p>12.2 Molecular Logic Circuits</p> <p>12.3 Inspiration from the Natural World</p> <p>12.3.1 Amino Acids, Peptides and Proteins</p> <p>12.3.2 Nucleotides, DNA and RNA</p> <p>12.3.3 ATP, ADP</p> <p>12.3.4 The Biological Membrane and Ion Transport</p> <p>12.3.5 Electron Transport</p> <p>12.3.6 Neurons</p> <p>12.4 Computing Strategies</p> <p>12.4.1 Von Neumann Computer</p> <p>12.4.2 Biological Information Processing</p> <p>12.4.3 Artificial Neural Networks</p> <p>12.4.4 Organic Neuromorphic Devices</p> <p>12.4.5 DNA and Microtubule Electronics</p> <p>12.4.6 Quantum Computing</p> <p>12.4.7 Evolvable Electronics</p> <p>12.5 Fault Tolerance and Self Repair</p> <p>12.6 Bacteriorhodopsin – A Light-driven Proton Pump</p> <p>12.7 Photosynthesis and Artificial Molecular Architectures</p> <p>12.8 Bio-chemical Sensors</p> <p>12.8.1 Biocatalytic Sensors</p> <p>12.8.2 Bioaffinity Sensors</p> <p>12.9 Electronic Olfaction and Gustation</p> <p>Problems</p> <p>References</p> <p>Further Reading</p>
<p><b>Michael C. Petty</b> is Professor Emeritus in the Department of Engineering at the University of Durham in the United Kingdom. He is Past President of the International Society for Molecular Electronics and Biocomputing and a previous Chairman of the School of Engineering at Durham University. He has published extensively in the areas of organic electronics and molecular electronics.</p>
<p><b>A one-stop examination of fundamental electrical behaviour in organic electronic device architectures </b></p> <p>In <i>Electrical Processes in Organic Thin Film Devices: From Bulk Materials to Nanoscale Architectures</i>, distinguished researcher Michael C. Petty delivers an in-depth treatment of the electrical behaviour of organic electronic devices focused on first principles. The author describes the fundamental electrical behaviour of various device architectures and offers an introduction to the physical processes that play a role in the electrical conductivity of organic materials. <p>Beginning with band theory, the text moves on to address the effects of thin film device architectures and nanostructures. The book discusses the applications to devices currently in the marketplace, like displays, as well as those under development (transistors, solar cells, and memories). <p><i>Electrical Processes in Organic Thin Film Devices</i> also describes emerging organic thin film architectures and explores the potential for single molecule electronics and biologically inspired devices. Finally, the book also includes: <ul><li>A detailed introduction to electronic and vibrational states in organic solids, including classical band theory, disordered semiconductors, and lattice vibrations</li> <li>Comprehensive explorations of electrical conductivity, including electronic and ionic processes, carrier drift, diffusion, the Boltzmann Transport Equation, excess carriers, recombination, doping, and superconductivity</li> <li>An overview of important electro-active organic materials, like molecular crystals, charge-transfer complexes, conductive polymers, carbon nanotubes, and graphene</li> <li>Practical considerations of defects and nanoscale phenomena, including transport processes in low-dimensional systems, surfaces and interface states</li> <li>In-depth examinations of metal contacts, including ohmic contacts, the Schottky Barrier, and metal/molecule contacts</li> <li>A systematic guide to the operating principles of metal/insulator/semiconductor structures and the field effect</li> <li>A set of problems (with solutions on-line) for each chapter of the book</li></ul> <p>Perfect for electronics developers and researchers in both industry and academia who study and work with molecular and nanoscale electronics, <i>Electrical Processes in Organic Thin Film Devices</i> also deserves a place in the libraries of undergraduate and postgraduate students in courses on molecular electronics, organic electronics, and plastic electronics.

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €