Details

Electrocatalysis in Balancing the Natural Carbon Cycle


Electrocatalysis in Balancing the Natural Carbon Cycle


1. Aufl.

von: Yaobing Wang

192,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 17.06.2021
ISBN/EAN: 9783527349166
Sprache: englisch
Anzahl Seiten: 544

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Electrocatalysis in Balancing the Natural Carbon Cycle</b> <p><b>Explore the potential of electrocatalysis to balance an off-kilter natural carbon cycle</b> <p>In <i>Electrocatalysis in Balancing the Natural Carbon Cycle</i>, accomplished researcher and author, Yaobing Wang, delivers a focused examination of why and how to solve the unbalance of the natural carbon cycle with electrocatalysis. The book introduces the natural carbon cycle and analyzes current bottlenecks being caused by human activities. It then examines fundamental topics, including CO<sub>2</sub> reduction, water splitting, and small molecule (alcohols and acid) oxidation to prove the feasibility and advantages of using electrocatalysis to tune the unbalanced carbon cycle. <p>You’ll realize modern aspects of electrocatalysis through the operando diagnostic and predictable mechanistic investigations. Further, you will be able to evaluate and manage the efficiency of the electrocatalytic reactions. The distinguished author presents a holistic view of solving an unbalanced natural carbon cycle with electrocatalysis. <p>Readers will also benefit from the inclusion of:<ul><li>A thorough introduction to the natural carbon cycle and the anthropogenic carbon cycle, including inorganic carbon to organic carbon and vice versa</li> <li> An exploration of electrochemical catalysis processes, including water splitting and the electrochemistry CO<sub>2</sub> reduction reaction (ECO<sub>2</sub>RR)</li> <li> A practical discussion of water and fuel basic redox parameters, including electrocatalytic materials and their performance evaluation in different electrocatalytic cells</li> <li> A perspective of the operando approaches and computational fundamentals and advances of different electrocatalytic redox reactions</li></ul> <p>Perfect for electrochemists, catalytic chemists, environmental and physical chemists, and inorganic chemists, <i>Electrocatalysis in Balancing the Natural Carbon Cycle</i> will also earn a place in the libraries of solid state and theoretical chemists seeking a one-stop reference for all aspects of electrocatalysis in carbon cycle-related reactions.
<p>Preface xv</p> <p>Acknowledgments xix</p> <p><b>Part I Introduction </b><b>1</b></p> <p><b>1 Introduction </b><b>3</b></p> <p>References 5</p> <p><b>Part II Natural Carbon Cycle </b><b>7</b></p> <p><b>2 Natural Carbon Cycle and Anthropogenic Carbon Cycle </b><b>9</b></p> <p>2.1 Definition and General Process 9</p> <p>2.2 From Inorganic Carbon to Organic Carbon 10</p> <p>2.3 From Organic Carbon to Inorganic Carbon 11</p> <p>2.4 Anthropogenic Carbon Cycle 11</p> <p>2.4.1 Anthropogenic Carbon Emissions 12</p> <p>2.4.2 Capture and Recycle of CO<sub>2 </sub>from the Atmosphere 13</p> <p>2.4.3 Fixation and Conversion of CO<sub>2</sub> 14</p> <p>2.4.3.1 Photochemical Reduction 14</p> <p>2.4.3.2 Electrochemical Reduction 15</p> <p>2.4.3.3 Chemical/Thermo Reforming 16</p> <p>2.4.3.4 Physical Fixation 16</p> <p>2.4.3.5 Anthropogenic Carbon Conversion and Emissions Via</p> <p>Electrochemistry 17</p> <p>References 18</p> <p><b>Part III Electrochemical Catalysis Process </b><b>21</b></p> <p><b>3 Electrochemical Catalysis Processes </b><b>23</b></p> <p>3.1 Water Splitting 23</p> <p>3.1.1 Reaction Mechanism 23</p> <p>3.1.1.1 Mechanism of OER 23</p> <p>3.1.1.2 Mechanism of ORR 24</p> <p>3.1.1.3 Mechanism of HER 26</p> <p>3.1.2 General Parameters to Evaluate Water Splitting 27</p> <p>3.1.2.1 Tafel Slope 27</p> <p>3.1.2.2 TOF 27</p> <p>3.1.2.3 Onset/Overpotential 28</p> <p>3.1.2.4 Stability 28</p> <p>3.1.2.5 Electrolyte 28</p> <p>3.2 Electrochemistry CO<sub>2</sub> Reduction Reaction (ECDRR) 29</p> <p>3.2.1 Possible Reaction Pathways of ECDRR 29</p> <p>3.2.1.1 Formation of HCOO<sup>−</sup> or HCOOH 29</p> <p>3.2.1.2 Formation of CO 30</p> <p>3.2.1.3 Formation of C<sub>1</sub> Products 30</p> <p>3.2.1.4 Formation of C<sub>2</sub> Products 31</p> <p>3.2.1.5 Formation of CH<sub>3</sub>COOH and CH<sub>3</sub>COO<sup>−</sup> 33</p> <p>3.2.1.6 Formation of <i>n</i>-Propanol (C<sub>3</sub> Product) 33</p> <p>3.2.2 General Parameters to Evaluate ECDRR 34</p> <p>3.2.2.1 Onset Potential 34</p> <p>3.2.2.2 Faradaic Efficiency 34</p> <p>3.2.2.3 Partial Current Density 34</p> <p>3.2.2.4 Environmental Impact and Cost 35</p> <p>3.2.2.5 Electrolytes 35</p> <p>3.2.2.6 Electrochemical Cells 36</p> <p>3.3 Small Organic Molecules Oxidation 36</p> <p>3.3.1 The Mechanism of Electrochemistry HCOOH Oxidation 36</p> <p>3.3.2 The Mechanism of Electro-oxidation of Alcohol 37</p> <p>References 40</p> <p><b>Part IV Water Splitting and Devices </b><b>43</b></p> <p><b>4 Water Splitting Basic Parameter/Others </b><b>45</b></p> <p>4.1 Composition and Exact Reactions in Different pH Solution 45</p> <p>4.2 Evaluation of the Catalytic Activity 47</p> <p>4.2.1 Overpotential 47</p> <p>4.2.2 Tafel Slope 48</p> <p>4.2.3 Stability 49</p> <p>4.2.4 Faradaic Efficiency 49</p> <p>4.2.5 Turnover Frequency 50</p> <p>References 50</p> <p><b>5 H<sub>2</sub>O Oxidation </b><b>53</b></p> <p>5.1 Regular H<sub>2</sub>O Oxidation 53</p> <p>5.1.1 Noble Metal Catalysts 53</p> <p>5.1.2 Other Transition Metals 64</p> <p>5.1.3 Other Catalysts 72</p> <p>5.2 Photo-Assisted H<sub>2</sub>O Oxidation 76</p> <p>5.2.1 Metal Compound-Based Catalysts 76</p> <p>5.2.2 Metal–Metal Heterostructure Catalysts 80</p> <p>5.2.3 Metal–Nonmetal Heterostructure Catalysts 86</p> <p>References 88</p> <p><b>6 H<sub>2</sub>O Reduction and Water Splitting Electrocatalytic Cell </b><b>91</b></p> <p>6.1 Noble-Metal-Based HER Catalysts 91</p> <p>6.2 Non-Noble Metal Catalysts 93</p> <p>6.3 Water Splitting Electrocatalytic Cell 96</p> <p>References 99</p> <p><b>Part V H<sub>2</sub> Oxidation/O<sub>2</sub> Reduction and Device </b><b>101</b></p> <p><b>7 Introduction </b><b>103</b></p> <p>7.1 Electrocatalytic Reaction Parameters 104</p> <p>7.1.1 Electrochemically Active Surface Area (ECSA) 104</p> <p>7.1.1.1 Test Methods 104</p> <p>7.1.2 Determination Based on the Surface Redox Reaction 104</p> <p>7.1.3 Determination by Electric Double-Layer Capacitance Method 105</p> <p>7.1.4 Kinetic and Exchange Current Density (<i>j<sub>k</sub> </i>and <i>j</i><sub>0</sub>) 105</p> <p>7.1.4.1 Definition 105</p> <p>7.1.4.2 Calculation 106</p> <p>7.1.5 Overpotential HUPD 106</p> <p>7.1.6 Tafel Slope 108</p> <p>7.1.7 Halfwave Potentials 108</p> <p>References 108</p> <p><b>8 Hydrogen Oxidation Reaction (HOR) </b><b>111</b></p> <p>8.1 Mechanism for HOR 111</p> <p>8.1.1 Hydrogen Bonding Energy (HBE) 111</p> <p>8.1.2 Underpotential Deposition (UPD) of Hydrogen 112</p> <p>8.2 Catalysts for HOR 112</p> <p>8.2.1 Pt-based Materials 112</p> <p>8.2.2 Pd-Based Materials 120</p> <p>8.2.3 Ir-Based Materials 121</p> <p>8.2.4 Rh-Based Materials 121</p> <p>8.2.5 Ru-Based Materials 121</p> <p>8.2.6 Non-noble Metal Materials 122</p> <p>References 130</p> <p><b>9 Oxygen Reduction Reaction (ORR) </b><b>133</b></p> <p>9.1 Mechanism for ORR 133</p> <p>9.1.1 Battery System and Damaged Electrodes 133</p> <p>9.1.2 Intermediate Species 134</p> <p>9.2 Catalysts in ORR 134</p> <p>9.2.1 Noble Metal Materials 134</p> <p>9.2.1.1 Platinum/Carbon Catalyst 138</p> <p>9.2.1.2 Pd and Pt 145</p> <p>9.2.2 Transition Metal Catalysts 145</p> <p>9.2.3 Metal-Free Catalysts 149</p> <p>9.3 Hydrogen Peroxide Synthesis 154</p> <p>9.3.1 Catalysts Advances 154</p> <p>9.3.1.1 Pure Metals 154</p> <p>9.3.1.2 Metal Alloys 156</p> <p>9.3.1.3 Carbon Materials 157</p> <p>9.3.1.4 Electrodes and Reaction Cells 158</p> <p>References 161</p> <p><b>10 Fuel Cell and Metal-Air Battery </b><b>167</b></p> <p>10.1 H<sub>2</sub> Fuel Cell 167</p> <p>10.2 Metal-Air Battery 170</p> <p>10.2.1 Metal-Air Battery Structure 171</p> <p>References 181</p> <p><b>Part VI Small Organic Molecules Oxidation and Device </b><b>183</b></p> <p><b>11 Introduction </b><b>185</b></p> <p>11.1 Primary Measurement Methods and Parameters 186</p> <p>11.1.1 Primary Measurement Methods 186</p> <p>11.1.2 Primary Parameter 193</p> <p>References 197</p> <p><b>12 C1 Molecule Oxidation </b><b>199</b></p> <p>12.1 Methane Oxidation 199</p> <p>12.1.1 Reaction Mechanism 199</p> <p>12.1.1.1 Solid–Liquid–Gas Reaction System 199</p> <p>12.1.2 Acidic Media 199</p> <p>12.1.3 Alkaline or Neutral Media 201</p> <p>12.2 Methanol Oxidation 203</p> <p>12.2.1 Reaction Thermodynamics and Mechanism 203</p> <p>12.2.2 Catalyst Advances 204</p> <p>12.2.2.1 Pd-Based Catalysts 204</p> <p>12.2.2.2 Pt-Based Catalysts 208</p> <p>12.2.2.3 Platinum-Based Nanowires 208</p> <p>12.2.2.4 Platinum-Based Nanotubes 210</p> <p>12.2.2.5 Platinum-Based Nanoflowers 212</p> <p>12.2.2.6 Platinum-Based Nanorods 214</p> <p>12.2.2.7 Platinum-Based Nanocubes 215</p> <p>12.2.3 Pt–Ru System 217</p> <p>12.2.4 Pt–Sn Catalysts 218</p> <p>12.3 Formic Acid Oxidation 219</p> <p>12.3.1 Reaction Mechanism 219</p> <p>12.3.2 Catalyst Advances 220</p> <p>12.3.2.1 Pd-Based Catalysts 220</p> <p>12.3.2.2 Pt-Based Catalysts 223</p> <p>References 226</p> <p><b>13 C<sub>2+</sub> Molecule Oxidation </b><b>235</b></p> <p>13.1 Ethanol Oxidation 235</p> <p>13.1.1 Reaction Mechanism 235</p> <p>13.1.2 Catalyst Advances 235</p> <p>13.1.2.1 Pd-Based Catalysts 235</p> <p>13.1.2.2 Pt-Based Catalysts 239</p> <p>13.1.2.3 Pt–Sn System 243</p> <p>13.2 Glucose Oxidase 250</p> <p>13.3 Ethylene Glycol Oxidation 251</p> <p>13.4 Glycerol Oxidation 251</p> <p>References 254</p> <p><b>14 Fuel Cell Devices </b><b>257</b></p> <p>14.1 Introduction 257</p> <p>14.2 Types of Direct Liquid Fuel Cells 258</p> <p>14.2.1 Acid and Alkaline Fuel Cells 258</p> <p>14.2.2 Direct Methanol Fuel Cells (DMFCs) 260</p> <p>14.2.3 Direct Ethanol Fuel Cells (DEFCs) 261</p> <p>14.2.4 Direct Ethylene Glycol Fuel Cells (DEGFCs) 261</p> <p>14.2.5 Direct Glycerol Fuel Cells (DGFCs) 262</p> <p>14.2.6 Direct Formic Acid Fuel Cells (DFAFCs) 262</p> <p>14.2.7 Direct Dimethyl Ether Fuel Cells (DDEFCs) 263</p> <p>14.2.8 Other DLFCs 263</p> <p>14.2.9 Challenges of DLFCs 264</p> <p>14.2.10 Fuel Conversion and Cathode Flooding 264</p> <p>14.2.11 Chemical Safety and By-product Production 265</p> <p>14.2.12 Unproven Long-term Durability 265</p> <p>References 267</p> <p><b>Part VII CO<sub>2</sub> Reduction and Device </b><b>271</b></p> <p><b>15 Introduction </b><b>273</b></p> <p>15.1 Basic Parameters of the CO<sub>2</sub> Reduction Reaction 276</p> <p>15.1.1 The Fundamental Parameters to Evaluate the Catalytic Activity 276</p> <p>15.1.1.1 Overpotential (<i>𝜂</i>) 276</p> <p>15.1.1.2 Faradaic Efficiency (FE) 276</p> <p>15.1.1.3 Current Density ( <i>j</i>) 277</p> <p>15.1.1.4 Energy Efficiency (EE) 277</p> <p>15.1.1.5 Tafel Slope 278</p> <p>15.1.2 Factors Affecting ECDRR 278</p> <p>15.1.2.1 Solvent/Electrolyte 278</p> <p>15.1.2.2 pH 280</p> <p>15.1.2.3 Cations and Anions 281</p> <p>15.1.2.4 Concentration 282</p> <p>15.1.2.5 Temperature and Pressure Effect 282</p> <p>15.1.3 Electrode 283</p> <p>15.1.3.1 Loading Method 283</p> <p>15.1.3.2 Preparation 284</p> <p>15.1.3.3 Experimental Process and Analysis Methods 284</p> <p>References 285</p> <p><b>16 Electrocatalysts-1 </b><b>289</b></p> <p>16.1 Heterogeneous Electrochemical CO<sub>2 </sub>Reduction Reaction 289</p> <p>16.2 Thermodynamic and Kinetic Parameters of Heterogeneous CO<sub>2</sub> Reduction in Liquid Phase 289</p> <p>16.2.1 Bulk Metals 293</p> <p>16.2.2 Nanoscale Metal and Oxidant Metal Catalysts 294</p> <p>16.2.2.1 Gold (Au) 295</p> <p>16.2.2.2 Silver (Ag) 296</p> <p>16.2.2.3 Palladium (Pd) 297</p> <p>16.2.2.4 Zinc (Zn) 298</p> <p>16.2.2.5 Copper (Cu) 299</p> <p>16.2.3 Bimetallic/Alloy 301</p> <p>References 306</p> <p><b>17 Electrocatalysts-2 </b><b>309</b></p> <p>17.1 Single-Atom Metal-Doped Carbon Catalysts (SACs) 309</p> <p>17.1.1 Nickel (Ni)-SACs 309</p> <p>17.1.2 Cobalt (Co)-SACs 311</p> <p>17.1.3 Iron (Fe)-SACs 311</p> <p>17.1.4 Zinc (Zn)-SACs 314</p> <p>17.1.5 Copper (Cu)-SACs 314</p> <p>17.1.6 Other 316</p> <p>17.2 Metal Nanoparticles-Doped Carbon Catalysts 317</p> <p>17.3 Porous Organic Material 320</p> <p>17.3.1 Metal Organic Frameworks (MOFs) 320</p> <p>17.3.2 Covalent Organic Frameworks (COFs) 321</p> <p>17.3.3 Metal-Free Catalyst 322</p> <p>17.4 Metal-Free Carbon-Based Catalyst 322</p> <p>17.4.1 Other Metal-Free Catalyst 324</p> <p>17.5 Electrochemical CO Reduction Reaction 324</p> <p>17.5.1 The Importance of CO Reduction Study 324</p> <p>17.5.2 Advances in CO Reduction 326</p> <p>References 327</p> <p><b>18 Devices </b><b>331</b></p> <p>18.1 H-Cell 331</p> <p>18.2 Flow Cell 333</p> <p>18.3 Requirements and Challenges for Next-Generation CO<sub>2</sub> Reduction Cell 338</p> <p>18.3.1 Wide Range of Electrocatalysts 338</p> <p>18.3.2 Fundamental Factor Influencing the Catalytic Activity for ECDRR 339</p> <p>18.3.3 Device Engineering 340</p> <p>References 342</p> <p><b>Part VIII Computations-Guided Electrocatalysis </b><b>345</b></p> <p><b>19 Insights into the Catalytic Process </b><b>347</b></p> <p>19.1 Electric Double Layer 347</p> <p>19.2 Kinetics and Thermodynamics 349</p> <p>19.3 Electrode Potential Effects 350</p> <p>References 352</p> <p><b>20 Computational Electrocatalysis </b><b>355</b></p> <p>20.1 Computational Screening Toward Calculation Theories 356</p> <p>20.2 Reactivity Descriptors 358</p> <p>20.2.1 d-band Theory Motivates Electronic Descriptor 359</p> <p>20.2.2 Coordination Numbers Motives Structure Descriptor 361</p> <p>20.3 Scaling Relationships: Applications of Descriptors 361</p> <p>20.4 The Activity Principles and the Volcano Curve 363</p> <p>20.5 DFT Modeling 366</p> <p>20.5.1 CHE Model 367</p> <p>20.5.2 Solvation Models 368</p> <p>20.5.3 Kinetic Modeling 371</p> <p>References 374</p> <p><b>21 Theory-Guided Rational Design </b><b>377</b></p> <p>21.1 Descriptors-Guided Screening 377</p> <p>21.2 Scaling Relationship-Guided Trends 380</p> <p>21.2.1 Reactivity Trends of ECR 380</p> <p>21.2.2 Reactivity Trends of O-included Reactions 382</p> <p>21.2.3 Reactivity Trends of H-included Reactions 385</p> <p>21.3 DOS-Guided Models and Active Sites 386</p> <p>References 388</p> <p><b>22 DFT Applications in Selected Electrocatalytic Systems </b><b>391</b></p> <p>22.1 Unveiling the Electrocatalytic Mechanism 391</p> <p>22.1.1 ECR Reaction 393</p> <p>22.1.2 OER Reaction 394</p> <p>22.1.3 ORR Reaction 396</p> <p>22.1.4 HER Reaction 397</p> <p>22.1.5 HOR Reaction 398</p> <p>22.1.6 CO Oxidation Reaction 400</p> <p>22.1.7 FAOR Reaction 402</p> <p>22.1.8 MOR Reaction 402</p> <p>22.1.9 EOR Reaction 404</p> <p>22.2 Understanding the Electrocatalytic Environment 406</p> <p>22.2.1 Solvation Effects 406</p> <p>22.2.2 pH Effects 409</p> <p>22.3 Analyzing the Electrochemical Kinetics 410</p> <p>22.4 Perspectives, Challenges, and Future Direction of DFT Computation in Electrocatalysis 413</p> <p>References 414</p> <p><b>Part IX Potential of In Situ Characterizations for Electrocatalysis </b><b>421</b></p> <p>References 422</p> <p><b>23 In Situ Characterization Techniques </b><b>423</b></p> <p>23.1 Optical Characterization Techniques 423</p> <p>23.1.1 Infrared Spectroscopy 423</p> <p>23.1.2 Raman Spectroscopy 424</p> <p>23.1.3 UV–vis Spectroscopy 426</p> <p>23.2 X-Ray Characterization Techniques 427</p> <p>23.2.1 X-Ray Diffraction (XRD) 429</p> <p>23.2.2 X-Ray Absorption Spectroscopy (XAS) 429</p> <p>23.2.3 X-Ray Photoelectron Spectroscopy (XPS) 431</p> <p>23.3 Mass Spectrometric Characterization Techniques 431</p> <p>23.4 Electron-Based Characterization Techniques 432</p> <p>23.4.1 Transmission Electron Microscopy (TEM) 434</p> <p>23.4.2 Scanning Probe Microscopy (SPM) 434</p> <p>References 436</p> <p><b>24 In Situ Characterizations in Electrocatalytic Cycle </b><b>441</b></p> <p>24.1 Investigating the Real Active Centers 441</p> <p>24.1.1 Monitoring the Electronic Structure 442</p> <p>24.1.2 Monitoring the Atomic Structure 444</p> <p>24.1.3 Monitoring the Catalyst Phase Transformation 446</p> <p>24.2 Investigating the Reaction Mechanism 449</p> <p>24.2.1 Through Adsorption/Activation Understanding 450</p> <p>24.2.2 Through Intermediates In Situ Probing 451</p> <p>24.2.3 Through Catalytic Product In Situ Detections 454</p> <p>24.3 Evaluating the Catalyst Stability/Decay 457</p> <p>24.4 Revealing the Interfacial-Related Insights 460</p> <p>24.5 Conclusion 462</p> <p>References 462</p> <p><b>Part X Electrochemical Catalytic Carbon Cycle </b><b>465</b></p> <p>References 466</p> <p><b>25 Electrochemical CO<sub>2</sub> Reduction to Fuels </b><b>467</b></p> <p>References 479</p> <p><b>26 Electrochemical Fuel Oxidation </b><b>483</b></p> <p>References 495</p> <p><b>27 Evaluation and Management of ECC </b><b>499</b></p> <p>27.1 Basic Performance Index 499</p> <p>27.2 CO<sub>2</sub> Capture and Fuel Transport 500</p> <p>27.3 External Management 500</p> <p>27.4 General Outlook 502</p> <p>References 505</p> <p>Index 507</p>
<p><i><b>Yaobing Wang</b> is Professor at the Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. He received his doctorate from the Institute of Chemistry, Chinese Academy of Sciences in 2008 and his research focuses on the design and synthesis of novel electrocatalysts and their applications.</i></p>
<p><b>Explore the potential of electrocatalysis to balance an off-kilter natural carbon cycle</b></p><p>In <i>Electrocatalysis in Balancing the Natural Carbon Cycle</i>, accomplished researcher and author, Yaobing Wang, delivers a focused examination of why and how to solve the unbalance of the natural carbon cycle with electrocatalysis. The book introduces the natural carbon cycle and analyzes current bottlenecks being caused by human activities. It then examines fundamental topics, including CO<sub>2</sub> reduction, water splitting, and small molecule (alcohols and acid) oxidation to prove the feasibility and advantages of using electrocatalysis to tune the unbalanced carbon cycle.</p><p>You’ll realize modern aspects of electrocatalysis through the operando diagnostic and predictable mechanistic investigations. Further, you will be able to evaluate and manage the efficiency of the electrocatalytic reactions. The distinguished author presents a holistic view of solving an unbalanced natural carbon cycle with electrocatalysis.</p><p>Readers will also benefit from the inclusion of:</p><ul><li>A thorough introduction to the natural carbon cycle and the anthropogenic carbon cycle, including inorganic carbon to organic carbon and vice versa</li><li> An exploration of electrochemical catalysis processes, including water splitting and the electrochemistry CO<sub>2</sub> reduction reaction (ECO<sub>2</sub>RR)</li><li> A practical discussion of water and fuel basic redox parameters, including electrocatalytic materials and their performance evaluation in different electrocatalytic cells </li><li> A perspective of the operando approaches and computational fundamentals and advances of different electrocatalytic redox reactions</li></ul><p>Perfect for electrochemists, catalytic chemists, environmental and physical chemists, and inorganic chemists, <i>Electrocatalysis in Balancing the Natural Carbon Cycle</i> will also earn a place in the libraries of solid state and theoretical chemists seeking a one-stop reference for all aspects of electrocatalysis in carbon cycle-related reactions.</p>

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €