Details

Layered Two-Dimensional Heterostructures and Their Tunneling Characteristics


Layered Two-Dimensional Heterostructures and Their Tunneling Characteristics


Springer Theses

von: Sergio C. de la Barrera

96,29 €

Verlag: Springer
Format: PDF
Veröffentl.: 21.11.2017
ISBN/EAN: 9783319692579
Sprache: englisch

Dieses eBook enthält ein Wasserzeichen.

Beschreibungen

This thesis demonstrates that layered heterostructures of two-dimensional crystals graphene, hexagonal boron nitride, and transition metal dichalcogenides provide new and interesting interlayer transport phenomena. Low-energy electron microscopy is employed to study the surface of atomically thin WSe2 prepared by metal-organic chemical vapor deposition on epitaxial graphene substrates, and a method for unambiguously measuring the number of atomic layers is presented. Using very low-energy electrons to probe the surface of similar heterostructures, a relationship between extracted work function differences from the layers and the nature of the electrical contact between them is revealed. An extension of this analysis is applied to surface studies of MoSe2 prepared by molecular beam epitaxy on epitaxial graphene. A large work function difference is measured between the MoSe2 and graphene, and a model is provided which suggests that this observation results from an exceptional defect density in the MoSe2 film. The thesis expounds a theory for computing tunneling currents between two-dimensional crystals separated by a thin insulating barrier; a few situations resulting in resonant tunneling and negative differential resistance are illustrated by computed examples, as well as observed characteristics, for monolayer and bilayer graphene tunneling junctions and transistors.
Chapter1. Introduction.- Chapter2. Experimental Methods.- Chapter3. Thickness Characterization of Tungsten Diselenide Using Electron Reflectivity Oscilations.- Chapter4. Tunneling Transport Between Transition Metal Dichalcogenides.- Chapter5. Application of Work Function Extraction Method to Material Characterization.- Chapter6. Theoretical Background.- Chapter7. Theory of Graphene-Insulator-Graphene Tunnel Junctions.- Chapter8. Tunneling Between Bilayers of Graphene.- Chapter9. Progress Toward 2D Tunneling Devices.- Chapter10. Conclusions.
Sergio de la Berrera holds a postdoctoral research position at Carnegie Mellon University, from where he also obtained his PhD.
This thesis demonstrates that layered heterostructures of two-dimensional crystals graphene, hexagonal boron nitride, and transition metal dichalcogenides provide new and interesting interlayer transport phenomena. Low-energy electron microscopy is employed to study the surface of atomically thin WSe2 prepared by metal-organic chemical vapor deposition on epitaxial graphene substrates, and a method for unambiguously measuring the number of atomic layers is presented. Using very low-energy electrons to probe the surface of similar heterostructures, a relationship between extracted work function differences from the layers and the nature of the electrical contact between them is revealed. An extension of this analysis is applied to surface studies of MoSe2 prepared by molecular beam epitaxy on epitaxial graphene. A large work function difference is measured between the MoSe2 and graphene, and a model is provided which suggests that this observation results from an exceptional defect density in the MoSe2 film. The thesis expounds a theory for computing tunneling currents between two-dimensional crystals separated by a thin insulating barrier; a few situations resulting in resonant tunneling and negative differential resistance are illustrated by computed examples, as well as observed characteristics, for monolayer and bilayer graphene tunneling junctions and transistors.
Nominated as an outstanding Ph.D. thesis by Carnegie Mellon University Focuses on the timely topic of interlayer transport phenomena in two-dimensional materials Describes a theory, illustrated with examples, for computing tunneling currents between two-dimensional crystals around a thin insulating barrier Provides an introduction to the field whilst demonstrating interesting new results via theoretical and experimental perspectives
<div>Nominated as an outstanding Ph.D. thesis by Carnegie Mellon University</div><div><br/></div><div>Focuses on the timely topic of interlayer transport phenomena in two-dimensional materials</div><div><br/></div><div>Describes a theory, illustrated with examples, for computing tunneling currents between two-dimensional crystals around a thin insulating barrier</div><div><br/></div><div>Provides an introduction to the field whilst demonstrating interesting new results via theoretical and experimental perspectives</div><div><br/></div><br/>

Diese Produkte könnten Sie auch interessieren:

Introduction to Focused Ion Beams
Introduction to Focused Ion Beams
von: Lucille A. Giannuzzi, Lucille A. North Carolina State University
PDF ebook
128,39 €
Advanced Magnetic Nanostructures
Advanced Magnetic Nanostructures
von: D.J. Sellmyer, Ralph Skomski
PDF ebook
149,79 €
High Thermal Conductivity Materials
High Thermal Conductivity Materials
von: Subhash L. Shinde, Jitendra Goela
PDF ebook
149,79 €