Details

Machine Learning Approach for Cloud Data Analytics in IoT


Machine Learning Approach for Cloud Data Analytics in IoT


1. Aufl.

von: Sachi Nandan Mohanty, Jyotir Moy Chatterjee, Monika Mangla, Suneeta Satpathy, Sirisha Potluri

190,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 14.07.2021
ISBN/EAN: 9781119785859
Sprache: englisch
Anzahl Seiten: 528

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<P>Machine Learning Approach <i>for</i> Cloud Data Analytics <i>in</i> IoT<BR> <p><b>The book covers the multidimensional perspective of machine learning through the perspective of cloud computing and Internet of Things ranging from fundamentals to advanced applications</b> <p>Sustainable computing paradigms like cloud and fog are capable of handling issues related to performance, storage and processing, maintenance, security, efficiency, integration, cost, energy and latency in an expeditious manner. In order to expedite decision-making involved in the complex computation and processing of collected data, IoT devices are connected to the cloud or fog environment. Since machine learning as a service provides the best support in business intelligence, organizations have been making significant investments in this technology. <p><i>Machine Learning Approach for Cloud Data Analytics in IoT</i> elucidates some of the best practices and their respective outcomes in cloud and fog computing environments. It focuses on all the various research issues related to big data storage and analysis, large-scale data processing, knowledge discovery and knowledge management, computational intelligence, data security and privacy, data representation and visualization, and data analytics. The featured technologies presented in the book optimizes various industry processes using business intelligence in engineering and technology. Light is also shed on cloud-based embedded software development practices to integrate complex machines so as to increase productivity and reduce operational costs. The various practices of data science and analytics which are used in all sectors to understand big data and analyze massive data patterns are also detailed in the book.
<p>Preface xix</p> <p>Acknowledgment xxiii</p> <p><b>1 Machine Learning–Based Data Analysis 1<br /></b><i>M. Deepika and K. Kalaiselvi</i></p> <p>1.1 Introduction 1</p> <p>1.2 Machine Learning for the Internet of Things Using Data Analysis 4</p> <p>1.2.1 Computing Framework 6</p> <p>1.2.2 Fog Computing 6</p> <p>1.2.3 Edge Computing 6</p> <p>1.2.4 Cloud Computing 7</p> <p>1.2.5 Distributed Computing 7</p> <p>1.3 Machine Learning Applied to Data Analysis 7</p> <p>1.3.1 Supervised Learning Systems 8</p> <p>1.3.2 Decision Trees 9</p> <p>1.3.3 Decision Tree Types 9</p> <p>1.3.4 Unsupervised Machine Learning 10</p> <p>1.3.5 Association Rule Learning 10</p> <p>1.3.6 Reinforcement Learning 10</p> <p>1.4 Practical Issues in Machine Learning 11</p> <p>1.5 Data Acquisition 12</p> <p>1.6 Understanding the Data Formats Used in Data Analysis Applications 13</p> <p>1.7 Data Cleaning 14</p> <p>1.8 Data Visualization 15</p> <p>1.9 Understanding the Data Analysis Problem-Solving Approach 15</p> <p>1.10 Visualizing Data to Enhance Understanding and Using Neural Networks in Data Analysis 16</p> <p>1.11 Statistical Data Analysis Techniques 17</p> <p>1.11.1 Hypothesis Testing 18</p> <p>1.11.2 Regression Analysis 18</p> <p>1.12 Text Analysis and Visual and Audio Analysis 18</p> <p>1.13 Mathematical and Parallel Techniques for Data Analysis 19</p> <p>1.13.1 Using Map-Reduce 20</p> <p>1.13.2 Leaning Analysis 20</p> <p>1.13.3 Market Basket Analysis 21</p> <p>1.14 Conclusion 21</p> <p>References 22</p> <p><b>2 Machine Learning for Cyber-Immune IoT Applications 25<br /></b><i>Suchismita Sahoo and Sushree Sangita Sahoo</i></p> <p>2.1 Introduction 25</p> <p>2.2 Some Associated Impactful Terms 27</p> <p>2.2.1 IoT 27</p> <p>2.2.2 IoT Device 28</p> <p>2.2.3 IoT Service 29</p> <p>2.2.4 Internet Security 29</p> <p>2.2.5 Data Security 30</p> <p>2.2.6 Cyberthreats 31</p> <p>2.2.7 Cyber Attack 31</p> <p>2.2.8 Malware 32</p> <p>2.2.9 Phishing 32</p> <p>2.2.10 Ransomware 33</p> <p>2.2.11 Spear-Phishing 33</p> <p>2.2.12 Spyware 34</p> <p>2.2.13 Cybercrime 34</p> <p>2.2.14 IoT Cyber Security 35</p> <p>2.2.15 IP Address 36</p> <p>2.3 Cloud Rationality Representation 36</p> <p>2.3.1 Cloud 36</p> <p>2.3.2 Cloud Data 37</p> <p>2.3.3 Cloud Security 38</p> <p>2.3.4 Cloud Computing 38</p> <p>2.4 Integration of IoT With Cloud 40</p> <p>2.5 The Concepts That Rules Over 41</p> <p>2.5.1 Artificial Intelligent 41</p> <p>2.5.2 Overview of Machine Learning 41</p> <p>2.5.2.1 Supervised Learning 41</p> <p>2.5.2.2 Unsupervised Learning 42</p> <p>2.5.3 Applications of Machine Learning in Cyber Security 43</p> <p>2.5.4 Applications of Machine Learning in Cybercrime 43</p> <p>2.5.5 Adherence of Machine Learning With Cyber Security in Relevance to IoT 43</p> <p>2.5.6 Distributed Denial-of-Service 44</p> <p>2.6 Related Work 45</p> <p>2.7 Methodology 46</p> <p>2.8 Discussions and Implications 48</p> <p>2.9 Conclusion 49</p> <p>References 49</p> <p><b>3 Employing Machine Learning Approaches for Predictive Data Analytics in Retail Industry 53<br /></b><i>Rakhi Akhare, Sanjivani Deokar, Monika Mangla and Hardik Deshmukh</i></p> <p>3.1 Introduction 53</p> <p>3.2 Related Work 55</p> <p>3.3 Predictive Data Analytics in Retail 56</p> <p>3.3.1 ML for Predictive Data Analytics 58</p> <p>3.3.2 Use Cases 59</p> <p>3.3.3 Limitations and Challenges 61</p> <p>3.4 Proposed Model 61</p> <p>3.4.1 Case Study 63</p> <p>3.5 Conclusion and Future Scope 68</p> <p>References 69</p> <p><b>4 Emerging Cloud Computing Trends for Business Transformation 71<br /></b><i>Prasanta Kumar Mahapatra, Alok Ranjan Tripathy and Alakananda Tripathy</i></p> <p>4.1 Introduction 71</p> <p>4.1.1 Computing Definition Cloud 72</p> <p>4.1.2 Advantages of Cloud Computing Over On-Premises IT Operation 73</p> <p>4.1.3 Limitations of Cloud Computing 74</p> <p>4.2 History of Cloud Computing 74</p> <p>4.3 Core Attributes of Cloud Computing 75</p> <p>4.4 Cloud Computing Models 77</p> <p>4.4.1 Cloud Deployment Model 77</p> <p>4.4.2 Cloud Service Model 79</p> <p>4.5 Core Components of Cloud Computing Architecture: Hardware and Software 83</p> <p>4.6 Factors Need to Consider for Cloud Adoption 84</p> <p>4.6.1 Evaluating Cloud Infrastructure 84</p> <p>4.6.2 Evaluating Cloud Provider 85</p> <p>4.6.3 Evaluating Cloud Security 86</p> <p>4.6.4 Evaluating Cloud Services 86</p> <p>4.6.5 Evaluating Cloud Service Level Agreements (SLA) 87</p> <p>4.6.6 Limitations to Cloud Adoption 87</p> <p>4.7 Transforming Business Through Cloud 88</p> <p>4.8 Key Emerging Trends in Cloud Computing 89</p> <p>4.8.1 Technology Trends 90</p> <p>4.8.2 Business Models 92</p> <p>4.8.3 Product Transformation 92</p> <p>4.8.4 Customer Engagement 92</p> <p>4.8.5 Employee Empowerment 93</p> <p>4.8.6 Data Management and Assurance 93</p> <p>4.8.7 Digitalization 93</p> <p>4.8.8 Building Intelligence Cloud System 93</p> <p>4.8.9 Creating Hyper-Converged Infrastructure 94</p> <p>4.9 Case Study: Moving Data Warehouse to Cloud Boosts Performance for Johnson & Johnson 94</p> <p>4.10 Conclusion 95</p> <p>References 96</p> <p><b>5 Security of Sensitive Data in Cloud Computing 99<br /></b><i>Kirti Wanjale, Monika Mangla and Paritosh Marathe</i></p> <p>5.1 Introduction 100</p> <p>5.1.1 Characteristics of Cloud Computing 100</p> <p>5.1.2 Deployment Models for Cloud Services 101</p> <p>5.1.3 Types of Cloud Delivery Models 102</p> <p>5.2 Data in Cloud 102</p> <p>5.2.1 Data Life Cycle 103</p> <p>5.3 Security Challenges in Cloud Computing for Data 105</p> <p>5.3.1 Security Challenges Related to Data at Rest 106</p> <p>5.3.2 Security Challenges Related to Data in Use 107</p> <p>5.3.3 Security Challenges Related to Data in Transit 107</p> <p>5.4 Cross-Cutting Issues Related to Network in Cloud 108</p> <p>5.5 Protection of Data 109</p> <p>5.6 Tighter IAM Controls 114</p> <p>5.7 Conclusion and Future Scope 117</p> <p>References 117</p> <p><b>6 Cloud Cryptography for Cloud Data Analytics in IoT 119<br /></b><i>N. Jayashri and K. Kalaiselvi</i></p> <p>6.1 Introduction 120</p> <p>6.2 Cloud Computing Software Security Fundamentals 120</p> <p>6.3 Security Management 122</p> <p>6.4 Cryptography Algorithms 123</p> <p>6.4.1 Types of Cryptography 123</p> <p>6.5 Secure Communications 127</p> <p>6.6 Identity Management and Access Control 133</p> <p>6.7 Autonomic Security 137</p> <p>6.8 Conclusion 139</p> <p>References 139</p> <p><b>7 Issues and Challenges of Classical Cryptography in Cloud Computing 143<br /></b><i>Amrutanshu Panigrahi, Ajit Kumar Nayak and Rourab Paul</i></p> <p>7.1 Introduction 144</p> <p>7.1.1 Problem Statement and Motivation 145</p> <p>7.1.2 Contribution 146</p> <p>7.2 Cryptography 146</p> <p>7.2.1 Cryptography Classification 147</p> <p>7.2.1.1 Classical Cryptography 147</p> <p>7.2.1.2 Homomorphic Encryption 149</p> <p>7.3 Security in Cloud Computing 150</p> <p>7.3.1 The Need for Security in Cloud Computing 151</p> <p>7.3.2 Challenges in Cloud Computing Security 152</p> <p>7.3.3 Benefits of Cloud Computing Security 153</p> <p>7.3.4 Literature Survey 154</p> <p>7.4 Classical Cryptography for Cloud Computing 157</p> <p>7.4.1 RSA 157</p> <p>7.4.2 AES 157</p> <p>7.4.3 DES 158</p> <p>7.4.4 Blowfish 158</p> <p>7.5 Homomorphic Cryptosystem 158</p> <p>7.5.1 Paillier Cryptosystem 159</p> <p>7.5.1.1 Additive Homomorphic Property 159</p> <p>7.5.2 RSA Homomorphic Cryptosystem 160</p> <p>7.5.2.1 Multiplicative Homomorphic Property 160</p> <p>7.6 Implementation 160</p> <p>7.7 Conclusion and Future Scope 162</p> <p>References 162</p> <p><b>8 Cloud-Based Data Analytics for Monitoring Smart Environments 167<br /></b><i>D. Karthika</i></p> <p>8.1 Introduction 167</p> <p>8.2 Environmental Monitoring for Smart Buildings 169</p> <p>8.2.1 Smart Environments 169</p> <p>8.3 Smart Health 171</p> <p>8.3.1 Description of Solutions in General 171</p> <p>8.3.2 Detection of Distress 172</p> <p>8.3.3 Green Protection 173</p> <p>8.3.4 Medical Preventive/Help 174</p> <p>8.4 Digital Network 5G and Broadband Networks 174</p> <p>8.4.1 IoT-Based Smart Grid Technologies 174</p> <p>8.5 Emergent Smart Cities Communication Networks 175</p> <p>8.5.1 RFID Technologies 177</p> <p>8.5.2 Identifier Schemes 177</p> <p>8.6 Smart City IoT Platforms Analysis System 177</p> <p>8.7 Smart Management of Car Parking in Smart Cities 178</p> <p>8.8 Smart City Systems and Services Securing: A Risk-Based Analytical Approach 178</p> <p>8.9 Virtual Integrated Storage System 179</p> <p>8.10 Convolutional Neural Network (CNN) 181</p> <p>8.10.1 IEEE 802.15.4 182</p> <p>8.10.2 BLE 182</p> <p>8.10.3 ITU-T G.9959 (Z-Wave) 183</p> <p>8.10.4 NFC 183</p> <p>8.10.5 LoRaWAN 184</p> <p>8.10.6 Sigfox 184</p> <p>8.10.7 NB-IoT 184</p> <p>8.10.8 PLC 184</p> <p>8.10.9 MS/TP 184</p> <p>8.11 Challenges and Issues 185</p> <p>8.11.1 Interoperability and Standardization 185</p> <p>8.11.2 Customization and Adaptation 186</p> <p>8.11.3 Entity Identification and Virtualization 187</p> <p>8.11.4 Big Data Issue in Smart Environments 187</p> <p>8.12 Future Trends and Research Directions in Big Data Platforms for the Internet of Things 188</p> <p>8.13 Case Study 189</p> <p>8.14 Conclusion 191</p> <p>References 191</p> <p><b>9 Performance Metrics for Comparison of Heuristics Task Scheduling Algorithms in Cloud Computing Platform 195<br /></b><i>Nidhi Rajak and Ranjit Rajak</i></p> <p>9.1 Introduction 195</p> <p>9.2 Workflow Model 197</p> <p>9.3 System Computing Model 198</p> <p>9.4 Major Objective of Scheduling 198</p> <p>9.5 Task Computational Attributes for Scheduling 198</p> <p>9.6 Performance Metrics 200</p> <p>9.7 Heuristic Task Scheduling Algorithms 201</p> <p>9.7.1 Heterogeneous Earliest Finish Time (HEFT) Algorithm 202</p> <p>9.7.2 Critical-Path-on-a-Processor (CPOP) Algorithm 208</p> <p>9.7.3 As Late As Possible (ALAP) Algorithm 213</p> <p>9.7.4 Performance Effective Task Scheduling (PETS) Algorithm 217</p> <p>9.8 Performance Analysis and Results 220</p> <p>9.9 Conclusion 224</p> <p>References 224</p> <p><b>10 Smart Environment Monitoring Models Using Cloud-Based Data Analytics: A Comprehensive Study 227<br /></b><i>Pradnya S. Borkar and Reena Thakur</i></p> <p>10.1 Introduction 228</p> <p>10.1.1 Internet of Things 229</p> <p>10.1.2 Cloud Computing 230</p> <p>10.1.3 Environmental Monitoring 232</p> <p>10.2 Background and Motivation 234</p> <p>10.2.1 Challenges and Issues 234</p> <p>10.2.2 Technologies Used for Designing Cloud-Based Data Analytics 240</p> <p>10.2.2.1 Communication Technologies 241</p> <p>10.2.3 Cloud-Based Data Analysis Techniques and Models 243</p> <p>10.2.3.1 MapReduce for Data Analysis 243</p> <p>10.2.3.2 Data Analysis Workflows 246</p> <p>10.2.3.3 NoSQL Models 247</p> <p>10.2.4 Data Mining Techniques 248</p> <p>10.2.5 Machine Learning 251</p> <p>10.2.5.1 Significant Importance of Machine Learning and Its Algorithms 253</p> <p>10.2.6 Applications 253</p> <p>10.3 Conclusion 261</p> <p>References 262</p> <p><b>11 Advancement of Machine Learning and Cloud Computing in the Field of Smart Health Care 273<br /></b><i>Aradhana Behura, Shibani Sahu and Manas Ranjan Kabat</i></p> <p>11.1 Introduction 274</p> <p>11.2 Survey on Architectural WBAN 278</p> <p>11.3 Suggested Strategies 280</p> <p>11.3.1 System Overview 280</p> <p>11.3.2 Motivation 281</p> <p>11.3.3 DSCB Protocol 281</p> <p>11.3.3.1 Network Topology 282</p> <p>11.3.3.2 Starting Stage 282</p> <p>11.3.3.3 Cluster Evolution 282</p> <p>11.3.3.4 Sensed Information Stage 283</p> <p>11.3.3.5 Choice of Forwarder Stage 283</p> <p>11.3.3.6 Energy Consumption as Well as Routing Stage 285</p> <p>11.4 CNN-Based Image Segmentation (UNet Model) 287</p> <p>11.5 Emerging Trends in IoT Healthcare 290</p> <p>11.6 Tier Health IoT Model 294</p> <p>11.7 Role of IoT in Big Data Analytics 294</p> <p>11.8 Tier Wireless Body Area Network Architecture 296</p> <p>11.9 Conclusion 303</p> <p>References 303</p> <p><b>12 Study on Green Cloud Computing—A Review 307<br /></b><i>Meenal Agrawal and Ankita Jain</i></p> <p>12.1 Introduction 307</p> <p>12.2 Cloud Computing 308</p> <p>12.2.1 Cloud Computing: On-Request Outsourcing-Pay-as-You-Go 308</p> <p>12.3 Features of Cloud Computing 309</p> <p>12.4 Green Computing 309</p> <p>12.5 Green Cloud Computing 309</p> <p>12.6 Models of Cloud Computing 310</p> <p>12.7 Models of Cloud Services 310</p> <p>12.8 Cloud Deployment Models 311</p> <p>12.9 Green Cloud Architecture 312</p> <p>12.10 Cloud Service Providers 312</p> <p>12.11 Features of Green Cloud Computing 313</p> <p>12.12 Advantages of Green Cloud Computing 313</p> <p>12.13 Limitations of Green Cloud Computing 314</p> <p>12.14 Cloud and Sustainability Environmental 315</p> <p>12.15 Statistics Related to Cloud Data Centers 315</p> <p>12.16 The Impact of Data Centers on Environment 315</p> <p>12.17 Virtualization Technologies 316</p> <p>12.18 Literature Review 316</p> <p>12.19 The Main Objective 318</p> <p>12.20 Research Gap 319</p> <p>12.21 Research Methodology 319</p> <p>12.22 Conclusion and Suggestions 320</p> <p>12.23 Scope for Further Research 320</p> <p>References 321</p> <p><b>13 Intelligent Reclamation of Plantae Affliction Disease 323<br /></b><i>Reshma Banu, G.F Ali Ahammed and Ayesha Taranum</i></p> <p>13.1 Introduction 324</p> <p>13.2 Existing System 327</p> <p>13.3 Proposed System 327</p> <p>13.4 Objectives of the Concept 328</p> <p>13.5 Operational Requirements 328</p> <p>13.6 Non-Operational Requirements 329</p> <p>13.7 Depiction Design Description 330</p> <p>13.8 System Architecture 330</p> <p>13.8.1 Module Characteristics 331</p> <p>13.8.2 Convolutional Neural System 332</p> <p>13.8.3 User Application 332</p> <p>13.9 Design Diagrams 333</p> <p>13.9.1 High-Level Design 333</p> <p>13.9.2 Low-Level Design 333</p> <p>13.9.3 Test Cases 335</p> <p>13.10 Comparison and Screenshot 335</p> <p>13.11 Conclusion 342</p> <p>References 342</p> <p><b>14 Prediction of Stock Market Using Machine Learning–Based Data Analytics 347<br /></b><i>Maheswari P. and Jaya A.</i></p> <p>14.1 Introduction of Stock Market 348</p> <p>14.1.1 Impact of Stock Prices 349</p> <p>14.2 Related Works 350</p> <p>14.3 Financial Prediction Systems Framework 352</p> <p>14.3.1 Conceptual Financial Prediction Systems 352</p> <p>14.3.2 Framework of Financial Prediction Systems Using Machine Learning 353</p> <p>14.3.2.1 Algorithm to Predicting the Closing Price of the Given Stock Data Using Linear Regression 355</p> <p>14.3.3 Framework of Financial Prediction Systems Using Deep Learning 355</p> <p>14.3.3.1 Algorithm to Predict the Closing Price of the Given Stock Using Long Short-Term Memory 356</p> <p>14.4 Implementation and Discussion of Result 357</p> <p>14.4.1 Pharmaceutical Sector 357</p> <p>14.4.1.1 Cipla Limited 357</p> <p>14.4.1.2 Torrent Pharmaceuticals Limited 359</p> <p>14.4.2 Banking Sector 359</p> <p>14.4.2.1 ICICI Bank 359</p> <p>14.4.2.2 State Bank of India 359</p> <p>14.4.3 Fast-Moving Consumer Goods Sector 362</p> <p>14.4.3.1 ITC 363</p> <p>14.4.3.2 Hindustan Unilever Limited 363</p> <p>14.4.4 Power Sector 363</p> <p>14.4.4.1 Adani Power Limited 363</p> <p>14.4.4.2 Power Grid Corporation of India Limited 364</p> <p>14.4.5 Automobiles Sector 368</p> <p>14.4.5.1 Mahindra & Mahindra Limited 368</p> <p>14.4.5.2 Maruti Suzuki India Limited 368</p> <p>14.4.6 Comparison of Prediction Using Linear Regression Model and Long-Short-Term Memory Model 368</p> <p>14.5 Conclusion 371</p> <p>14.5.1 Future Enhancement 372</p> <p>References 372</p> <p>Web Citations 373</p> <p><b>15 Pehchaan: Analysis of the ‘Aadhar Dataset’ to Facilitate a Smooth and Efficient Conduct of the Upcoming NPR 375<br /></b><i>Soumyadev Mukherjee, Harshit Anand, Nishan Acharya, Subham Char, Pritam Ghosh and MinakhiRout</i></p> <p>15.1 Introduction 376</p> <p>15.2 Basic Concepts 377</p> <p>15.3 Study of Literature Survey and Technology 380</p> <p>15.4 Proposed Model 381</p> <p>15.5 Implementation and Results 383</p> <p>15.6 Conclusion 389</p> <p>References 389</p> <p><b>16 Deep Learning Approach for Resource Optimization in Blockchain, Cellular Networks, and IoT: Open Challenges and Current Solutions 391<br /></b><i>Upinder Kaur and Shalu</i></p> <p>16.1 Introduction 392</p> <p>16.1.1 Aim 393</p> <p>16.1.2 Research Contribution 395</p> <p>16.1.3 Organization 396</p> <p>16.2 Background 396</p> <p>16.2.1 Blockchain 397</p> <p>16.2.2 Internet of Things (IoT) 398</p> <p>16.2.3 5G Future Generation Cellular Networks 398</p> <p>16.2.4 Machine Learning and Deep Learning Techniques 399</p> <p>16.2.5 Deep Reinforcement Learning 399</p> <p>16.3 Deep Learning for Resource Management in Blockchain, Cellular, and IoT Networks 401</p> <p>16.3.1 Resource Management in Blockchain for 5G Cellular Networks 402</p> <p>16.3.2 Deep Learning Blockchain Application for Resource Management in IoT Networks 402</p> <p>16.4 Future Research Challenges 413</p> <p>16.4.1 Blockchain Technology 413</p> <p>16.4.1.1 Scalability 414</p> <p>16.4.1.2 Efficient Consensus Protocols 415</p> <p>16.4.1.3 Lack of Skills and Experts 415</p> <p>16.4.2 IoT Networks 416</p> <p>16.4.2.1 Heterogeneity of IoT and 5G Data 416</p> <p>16.4.2.2 Scalability Issues 416</p> <p>16.4.2.3 Security and Privacy Issues 416</p> <p>16.4.3 5G Future Generation Networks 416</p> <p>16.4.3.1 Heterogeneity 416</p> <p>16.4.3.2 Security and Privacy 417</p> <p>16.4.3.3 Resource Utilization 417</p> <p>16.4.4 Machine Learning and Deep Learning 417</p> <p>16.4.4.1 Interpretability 418</p> <p>16.4.4.2 Training Cost for ML and DRL Techniques 418</p> <p>16.4.4.3 Lack of Availability of Data Sets 418</p> <p>16.4.4.4 Avalanche Effect for DRL Approach 419</p> <p>16.4.5 General Issues 419</p> <p>16.4.5.1 Security and Privacy Issues 419</p> <p>16.4.5.2 Storage 419</p> <p>16.4.5.3 Reliability 420</p> <p>16.4.5.4 Multitasking Approach 420</p> <p>16.5 Conclusion and Discussion 420</p> <p>References 422</p> <p><b>17 Unsupervised Learning in Accordance With New Aspects of Artificial Intelligence 429<br /></b><i>Riya Sharma, Komal Saxena and Ajay Rana</i></p> <p>17.1 Introduction 430</p> <p>17.2 Applications of Machine Learning in Data Management Possibilities 431</p> <p>17.2.1 Terminology of Basic Machine Learning 432</p> <p>17.2.2 Rules Based on Machine Learning 434</p> <p>17.2.3 Unsupervised vs. Supervised Methodology 434</p> <p>17.3 Solutions to Improve Unsupervised Learning Using Machine Learning 436</p> <p>17.3.1 Insufficiency of Labeled Data 436</p> <p>17.3.2 Overfitting 437</p> <p>17.3.3 A Closer Look Into Unsupervised Algorithms 437</p> <p>17.3.3.1 Reducing Dimensionally 437</p> <p>17.3.3.2 Principal Component Analysis 438</p> <p>17.3.4 Singular Value Decomposition (SVD) 439</p> <p>17.3.4.1 Random Projection 439</p> <p>17.3.4.2 Isomax 439</p> <p>17.3.5 Dictionary Learning 439</p> <p>17.3.6 The Latent Dirichlet Allocation 440</p> <p>17.4 Open Source Platform for Cutting Edge Unsupervised Machine Learning 440</p> <p>17.4.1 TensorFlow 441</p> <p>17.4.2 Keras 441</p> <p>17.4.3 Scikit-Learn 441</p> <p>17.4.4 Microsoft Cognitive Toolkit 442</p> <p>17.4.5 Theano 442</p> <p>17.4.6 Caffe 442</p> <p>17.4.7 Torch 442</p> <p>17.5 Applications of Unsupervised Learning 443</p> <p>17.5.1 Regulation of Digital Data 443</p> <p>17.5.2 Machine Learning in Voice Assistance 443</p> <p>17.5.3 For Effective Marketing 444</p> <p>17.5.4 Advancement of Cyber Security 444</p> <p>17.5.5 Faster Computing Power 444</p> <p>17.5.6 The Endnote 445</p> <p>17.6 Applications Using Machine Learning Algos 445</p> <p>17.6.1 Linear Regression 445</p> <p>17.6.2 Logistic Regression 446</p> <p>17.6.3 Decision Tree 446</p> <p>17.6.4 Support Vector Machine (SVM) 446</p> <p>17.6.5 Naive Bayes 446</p> <p>17.6.6 K-Nearest Neighbors 447</p> <p>17.6.7 K-Means 447</p> <p>17.6.8 Random Forest 447</p> <p>17.6.9 Dimensionality Reduction Algorithms 448</p> <p>17.6.10 Gradient Boosting Algorithms 448</p> <p>References 449</p> <p><b>18 Predictive Modeling of Anthropomorphic Gamifying Blockchain-Enabled Transitional Healthcare System 461<br /></b><i>Deepa Kumari, B.S.A.S. Rajita, Medindrao Raja Sekhar, Ritika Garg and Subhrakanta Panda</i></p> <p>18.1 Introduction 462</p> <p>18.1.1 Transitional Healthcare Services and Their Challenges 462</p> <p>18.2 Gamification in Transitional Healthcare: A New Model 463</p> <p>18.2.1 Anthropomorphic Interface With Gamification 464</p> <p>18.2.2 Gamification in Blockchain 465</p> <p>18.2.3 Anthropomorphic Gamification in Blockchain: Motivational Factors 466</p> <p>18.3 Existing Related Work 468</p> <p>18.4 The Framework 478</p> <p>18.4.1 Health Player 479</p> <p>18.4.2 Data Collection 480</p> <p>18.4.3 Anthropomorphic Gamification Layers 480</p> <p>18.4.4 Ethereum 480</p> <p>18.4.4.1 Ethereum-Based Smart Contracts for Healthcare 481</p> <p>18.4.4.2 Installation of Ethereum Smart Contract 481</p> <p>18.4.5 Reward Model 482</p> <p>18.4.6 Predictive Models 482</p> <p>18.5 Implementation 483</p> <p>18.5.1 Methodology 483</p> <p>18.5.2 Result Analysis 484</p> <p>18.5.3 Threats to the Validity 486</p> <p>18.6 Conclusion 487</p> <p>References 487</p> <p>Index 491</p>
<p><b>Audience</b></p> <p>Researchers and industry engineers in computer science and artificial intelligence, IT professionals, network administrators, cybersecurity experts. <p><b>Sachi Nandan Mohanty</b> received his PhD from IIT Kharagpur 2015 and he is now an associate professor in the Department of Computer Science & Engineering at ICFAI Foundation for Higher Education, Hyderabad, India. <p><b>Jyotir Moy Chatterjee</b> is an assistant professor in the IT Department at Lord Buddha Education Foundation (Asia Pacific University of Technology & Innovation), Kathmandu, Nepal. <p><b>Monika Mangla</b> received her PhD from Thapar Institute of Engineering & Technology, Patiala, Punjab in 2019, and is now an assistant professor in the Department of Computer Engineering at Lokmanya Tilak College of Engineering (LTCoE), Navi Mumbai, India. <p><b>Suneeta Satpathy</b> received her PhD from Utkal University, Bhubaneswar, Odisha in 2015, and is now an associate professor in the Department of Computer Science & Engineering at College of Engineering Bhubaneswar (CoEB), Bhubaneswar, India. <p><b>Ms. Sirisha Potluri</b> is an assistant professor in the Department of Computer Science & Engineering at ICFAI Foundation for Higher Education, Hyderabad, India.
<p><b>The book covers the multidimensional perspective of machine learning through the perspective of cloud computing and Internet of Things ranging from fundamentals to advanced applications</b></p> <p>Sustainable computing paradigms like cloud and fog are capable of handling issues related to performance, storage and processing, maintenance, security, efficiency, integration, cost, energy and latency in an expeditious manner. In order to expedite decision-making involved in the complex computation and processing of collected data, IoT devices are connected to the cloud or fog environment. Since machine learning as a service provides the best support in business intelligence, organizations have been making significant investments in this technology. <p><i>Machine Learning Approach for Cloud Data Analytics in IoT</i> elucidates some of the best practices and their respective outcomes in cloud and fog computing environments. It focuses on all the various research issues related to big data storage and analysis, large-scale data processing, knowledge discovery and knowledge management, computational intelligence, data security and privacy, data representation and visualization, and data analytics. The featured technologies presented in the book optimizes various industry processes using business intelligence in engineering and technology. Light is also shed on cloud-based embedded software development practices to integrate complex machines so as to increase productivity and reduce operational costs. The various practices of data science and analytics which are used in all sectors to understand big data and analyze massive data patterns are also detailed in the book.

Diese Produkte könnten Sie auch interessieren:

Quantifiers in Action
Quantifiers in Action
von: Antonio Badia
PDF ebook
96,29 €
Managing and Mining Uncertain Data
Managing and Mining Uncertain Data
von: Charu C. Aggarwal
PDF ebook
96,29 €