Details

Optical and Wireless Convergence for 5G Networks


Optical and Wireless Convergence for 5G Networks


IEEE Press 1. Aufl.

von: Abdelgader M. Abdalla, Jonathan Rodriguez, Issa Elfergani, Antonio Teixeira

117,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 02.08.2019
ISBN/EAN: 9781119491613
Sprache: englisch
Anzahl Seiten: 352

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>The mobile market has experienced unprecedented growth over the last few decades. Consumer trends have shifted towards mobile internet services supported by 3G and 4G networks worldwide. Inherent to existing networks are problems such as lack of spectrum, high energy consumption, and inter-cell interference. These limitations have led to the emergence of 5G technology. It is clear that any 5G system will integrate optical communications, which is already a mainstay of wide area networks. Using an optical core to route 5G data raises significant questions of how wireless and optical can coexist in synergy to provide smooth, end-to-end communication pathways. <i>Optical and Wireless Convergence for 5G Networks </i>explores new emerging technologies, concepts, and approaches for seamlessly integrating optical-wireless for 5G and beyond.</p> <p>Considering both fronthaul and backhaul perspectives, this timely book provides insights on managing an ecosystem of mixed and multiple access network communications focused on optical-wireless convergence. Topics include Fiber–Wireless (FiWi), Hybrid Fiber-Wireless (HFW), Visible Light Communication (VLC), 5G optical sensing technologies, approaches to real-time IoT applications, Tactile Internet, Fog Computing (FC), Network Functions Virtualization (NFV), Software-Defined Networking (SDN), and many others. This book aims to provide an inclusive survey of 5G optical-wireless requirements, architecture developments, and technological solutions.</p>
<p>About the Editors xiii</p> <p>List of Contributors xvii</p> <p>Preface xxxi</p> <p>Acknowledgments xxxiii</p> <p>Introduction xxxv</p> <p><b>1 Towards a Converged Optical-Wireless Fronthaul/Backhaul Solution for 5G Networks and Beyond 1<br /></b><i>Isiaka Ajewale Alimi, Nelson Jesus Muga, Abdelgader M. Abdalla, Cátia Pinho, Jonathan Rodriguez, Paulo Pereira Monteiro, and Antonio Luís Teixeira</i></p> <p>1.1 Introduction 1</p> <p>1.2 Cellular Network Interface and Solution 2</p> <p>1.2.1 MBH/MFH Architecture 2</p> <p>1.2.1.1 Mobile Backhaul (MBH) 2</p> <p>1.2.1.2 Mobile Fronthaul (MFH) 3</p> <p>1.2.2 Integrated MBH/MFH Transport Network 3</p> <p>1.3 5G Enabling Technologies 4</p> <p>1.3.1 Ultra-Densification 4</p> <p>1.3.2 C-RAN and RAN Virtualization 4</p> <p>1.3.3 Advanced Radio Coordination 6</p> <p>1.3.4 Millimeter-Wave Small Cells 7</p> <p>1.3.5 Massive MIMO 8</p> <p>1.3.6 New Multicarrier Modulations for 5G 8</p> <p>1.4 Fiber-Wireless Network Convergence 9</p> <p>1.5 Radio-Over-Fiber Transmission Scheme 10</p> <p>1.5.1 Digital Radio-Over-Fiber (D-RoF) Transmission 10</p> <p>1.5.2 Analog Radio-Over-Fiber (A-RoF) Transmission 10</p> <p>1.6 Optical MBH/MFH Transport Network Multiplexing Schemes 11</p> <p>1.6.1 Wavelength-Division Multiplexing (WDM) Based Schemes 11</p> <p>1.6.2 Spatial-Division Multiplexing (SDM) Based Schemes 12</p> <p>1.6.2.1 State-of-the-Art of SDM in 5G Infrastructure 12</p> <p>1.6.2.2 Spatial Division Multiplexing Enabling Tools 13</p> <p>1.7 Wireless based MFH/MBH 16</p> <p>1.7.1 FSO Communication Systems 17</p> <p>1.7.1.1 Log-Normal Distribution (LN) 17</p> <p>1.7.1.2 Gamma-Gamma (ΓΓ) Distribution 19</p> <p>1.7.2 Hybrid RF/FSO Technology 20</p> <p>1.7.3 Relay-Assisted FSO Transmission 20</p> <p>1.8 Experimental Channel Measurement and Characterization 21</p> <p>1.9 Results and Discussions 23</p> <p>1.10 Conclusion 24</p> <p>Acknowledgments 24</p> <p>Bibliography 25</p> <p><b>2 Hybrid Fiber Wireless (HFW) Extension for GPON Toward 5G 31<br /></b><i>Rattana Chuenchom, Andreas Steffan, Robert G. Walker, Stephen J. Clements, Yigal Leiba, Andrzej Banach, Mateusz Lech, and Andreas Stöhr</i></p> <p>2.1 Introduction 31</p> <p>2.2 Passive Optical Network 32</p> <p>2.2.1 GPON and EPON Standards 32</p> <p>2.3 Transparent Wireless Extension of Optical Links 33</p> <p>2.3.1 Transparent Wireless Extension of Optical Links Using Coherent RoF (CRoF) 33</p> <p>2.4 Key Enabling Photonic and Electronic Technologies 36</p> <p>2.4.1 Coherent Photonic Mixer 36</p> <p>2.4.2 Single Side Band Mach–Zehnder Modulator 39</p> <p>2.4.3 High Power Amplifier in the E-band for GPON Extension 42</p> <p>2.4.4 Integrated Radio Access Units 44</p> <p>2.5 Field Trial for a 2.5 Gbit s<sup>−1</sup> GPON over Wireless 46</p> <p>2.5.1 RX Throughput and Packet Loss 50</p> <p>2.5.2 Latency 52</p> <p>2.5.3 Jitter 53</p> <p>2.6 Conclusions 53</p> <p>Bibliography 54</p> <p><b>3 Software Defined Networking and Network Function Virtualization for Converged Access-Metro Networks 57<br /></b><i>Marco Ruffini and Frank Slyne</i></p> <p>3.1 Introduction 57</p> <p>3.2 The 5G Requirements Driving Network Convergence and Virtualization 58</p> <p>3.3 Access and Metro Convergence 61</p> <p>3.3.1 Long-Reach Passive Optical Network 62</p> <p>3.3.2 New Architectures in Support of 5G Networks, Network Virtualization and Mobile Functional Split 63</p> <p>3.4 Functional Convergence and Virtualization of the COs 66</p> <p>3.4.1 Infrastructure 67</p> <p>3.4.1.1 Disaggregated Hardware 67</p> <p>3.4.1.2 I/O Abstraction and Data Path 68</p> <p>3.4.1.3 Data Centre Switching Fabric 70</p> <p>3.4.1.4 Optimized Infrastructure Projects 70</p> <p>3.4.2 Management and Control 70</p> <p>3.4.2.1 Network Control 70</p> <p>3.4.2.2 Cloud and Virtual Management 71</p> <p>3.4.2.3 Orchestration, Management and Policy 72</p> <p>3.4.3 Cross-Layer Components 73</p> <p>3.5 Conclusions 73</p> <p>Bibliography 74</p> <p><b>4 Multicore Fibres for 5G Fronthaul Evolution 79<br /></b><i>Ivana Gasulla and José Capmany</i></p> <p>4.1 Why 5G Communications Demand Optical Space-Division Multiplexing 79</p> <p>4.2 Multicore Fibre Transmission Review 81</p> <p>4.2.1 Homogeneous MCFs 82</p> <p>4.2.2 Heterogeneous MCFs 83</p> <p>4.3 Radio Access Networks Using Multicore Fibre Links 84</p> <p>4.3.1 Basic MCF Link Between the Central Office and Base Station 86</p> <p>4.3.2 MCF Based RoF C-RAN 87</p> <p>4.3.3 MCF Based DRoF C-RAN 89</p> <p>4.4 Microwave Signal Processing Enabled by Multicore Fibers 90</p> <p>4.4.1 Signal Processing Over a Heterogeneous MCF Link 93</p> <p>4.4.2 RF Signal Processing Over a Homogeneous MCF Multi-Cavity Device 94</p> <p>4.5 Final Remarks 97</p> <p>Bibliography 97</p> <p><b>5 Enabling VLC and WiFi Network Technologies and Architectures Toward 5G 101<br /></b><i>Isiaka Ajewale Alimi, Abdelgader M. Abdalla, Jonathan Rodriguez, Paulo Pereira Monteiro, Antonio Luís Teixeira, Stanislav Zvánovec, and Zabih Ghassemlooy</i></p> <p>5.1 Introduction 101</p> <p>5.2 Optical Wireless Systems 103</p> <p>5.3 Visible Light Communication (VLC) System Fundamentals 105</p> <p>5.4 VLC Current and Anticipated Future Applications 107</p> <p>5.4.1 Underwater Wireless Communications 109</p> <p>5.4.2 Airline and Aviation 112</p> <p>5.4.3 Hospitals 112</p> <p>5.4.4 Vehicular Communication Systems 113</p> <p>5.4.5 Sensitive Areas 114</p> <p>5.4.6 Manufacturing and Industrial Applications 114</p> <p>5.4.7 Retail Stores 114</p> <p>5.4.8 Consumer Electronics 114</p> <p>5.4.9 Internet of Things 115</p> <p>5.4.10 Other Application Areas 115</p> <p>5.5 Hybrid VLC and RF Networks 116</p> <p>5.6 Challenges and Open-Ended Issues 117</p> <p>5.6.1 Flicker and Dimming 117</p> <p>5.6.2 Data Rate Improvement 117</p> <p>5.7 Conclusions 118</p> <p>Acknowledgments 118</p> <p>Bibliography 118</p> <p><b>6 5G RAN: Key Radio Technologies and Hardware Implementation Challenges 123<br /></b><i>Hassan Hamdoun, Mohamed Hamid, Shoaib Amin, and Hind Dafallah</i></p> <p>6.1 Introduction 123</p> <p>6.2 5G NR Enabled Use Cases 124</p> <p>6.2.1 eMBB and uRLLC 124</p> <p>6.2.1.1 mMTC 125</p> <p>6.2.2 Migration to 5G 125</p> <p>6.3 5G RAN Radio Enabling Technologies 126</p> <p>6.3.1 Massive MIMO (M-MIMO) 126</p> <p>6.3.1.1 M-MIMO in mmWave 128</p> <p>6.3.1.2 M-MIMO in sub 6 GHz 128</p> <p>6.3.1.3 Distributed MIMO (D-MIMO) 128</p> <p>6.3.2 Carrier Aggregation and Licensed Assisted Access to an Unlicensed Spectrum 129</p> <p>6.3.3 Dual Connectivity 130</p> <p>6.3.4 Device-to-Device (D2D) Communication 130</p> <p>6.4 Hardware Impairments 131</p> <p>6.4.1 Hardware Impairments – Transmitters 132</p> <p>6.4.2 Hardware Impairments – Receivers 133</p> <p>6.4.3 Hardware Impairments – Transceivers 133</p> <p>6.5 Technology and Fabrication Challenges 135</p> <p>6.6 Conclusion 135</p> <p>Bibliography 136</p> <p><b>7 Millimeter Wave Antenna Design for 5G Applications 139<br /></b><i>Issa Elfergani, Abubakar Sadiq Hussaini, Abdelgader M. Abdalla, Jonathan Rodriguez, and Raed Abd-Alhameed</i></p> <p>7.1 Introduction 139</p> <p>7.2 Antenna Design and Procedure 142</p> <p>7.3 Antenna Optimization and Analysis 143</p> <p>7.3.1 The Influence of Ground Plane Length (G L) 143</p> <p>7.3.2 The Effect of Feeding Strip Position (F P) 144</p> <p>7.3.3 The Influences of the Substrate Type 145</p> <p>7.4 Millimeter Wave Antenna Design with Notched Frequency Band 146</p> <p>7.5 Millimeter Wave Antenna Design with Loaded Capacitor 148</p> <p>7.6 Conclusion 152</p> <p>Acknowledgments 153</p> <p>Bibliography 153</p> <p><b>8 Wireless Signal Encapsulation in a Seamless Fiber–Millimeter Wave System 157</b></p> <p><i>Pham Tien Dat, Atsushi Kanno, Naokatsu Yamamoto, and Testuya Kawanishi</i></p> <p>8.1 Introduction 157</p> <p>8.2 Principle of Signal Encapsulation 158</p> <p>8.2.1 Downlink System 158</p> <p>8.2.2 Uplink System 161</p> <p>8.3 Examples of Signal Encapsulation 162</p> <p>8.3.1 Downlink Transmission 162</p> <p>8.3.2 Uplink Transmission 166</p> <p>8.3.3 MmWave Link Distance 170</p> <p>8.4 Conclusion 174</p> <p>Bibliography 175</p> <p><b>9 5G Optical Sensing Technologies 179<br /></b><i>Seedahmed S. Mahmoud, Bernhard Koziol, and Jusak Jusak</i></p> <p>9.1 Introduction 179</p> <p>9.2 Optical Fibre Communication Network: Intrusion Methods 182</p> <p>9.3 Physical Protection of Optical Fiber Communication Cables 183</p> <p>9.3.1 Location-Based Optical Fibre Sensors 185</p> <p>9.3.1.1 OTDR Based Sensor 185</p> <p>9.3.1.2 Mach–Zehnder Interferometry 186</p> <p>9.3.2 Point-Based OFSs 187</p> <p>9.3.2.1 FBGs 187</p> <p>9.3.3 Zone-Based OFSs 188</p> <p>9.3.3.1 Michelson Interferometer 188</p> <p>9.4 Design Considerations and Performance Characteristics 189</p> <p>9.4.1 Performance Parameters 189</p> <p>9.4.2 The Need for Robust Signal Processing Methods 190</p> <p>9.4.3 System Installation and Technology Suitability 191</p> <p>9.5 Conclusions 192</p> <p>Bibliography 192</p> <p><b>10 The Tactile Internet over 5G FiWi Architectures 197<br /></b><i>Amin Ebrahimzadeh, Mahfuzulhoq Chowdhury, and Martin Maier</i></p> <p>10.1 Introduction 197</p> <p>10.2 The TI: State of the Art and Open Challenges 203</p> <p>10.3 Related Work 206</p> <p>10.4 HITL Centric Teleoperation over AI Enhanced FiWi Networks 207</p> <p>10.5 HART Centric Task Allocation over Multi-Robot FiWi Based TI Infrastructures 213</p> <p>10.6 Conclusions 219</p> <p>Bibliography 220</p> <p><b>11 Energy Efficiency in the Cloud Radio Access Network (C-RAN) for 5G Mobile Networks: Opportunities and Challenges 225<br /></b><i>Isiaka Ajewale Alimi, Abdelgader M. Abdalla, Akeem Olapade Mufutau, Fernando Pereira Guiomar, Ifiok Otung, Jonathan Rodriguez, Paulo Pereira Monteiro, and Antonio Luís Teixeira</i></p> <p>11.1 Introduction 225</p> <p>11.1.1 Environmental Effects 226</p> <p>11.1.2 Economic Benefits 227</p> <p>11.2 Standardized Energy Efficiency Metric (Green Metric) 229</p> <p>11.2.1 Power Per Subscriber, Traffic and Distance/Area 230</p> <p>11.2.2 Energy Consumption Rating (ECR) Measured in W Gbps<sup>−1</sup> 231</p> <p>11.2.3 Telecommunications Energy Efficiency Ratio (TEER) 231</p> <p>11.2.4 Telecommunication Equipment Energy Efficiency Rating (TEEER) 231</p> <p>11.3 Green Design for Energy Crunch Prevention in 5G Networks 232</p> <p>11.3.1 Hardware Solutions 233</p> <p>11.3.2 Network Planning and Deployment 234</p> <p>11.3.2.1 Dense Networks 234</p> <p>11.3.2.2 Offloading Techniques 234</p> <p>11.3.3 Resource Allocation 235</p> <p>11.3.4 Energy Harvesting (EH) and Transfer 235</p> <p>11.3.4.1 Dedicated EH 235</p> <p>11.3.4.2 Ambient EH 235</p> <p>11.4 Fiber Based Energy Efficient Network 237</p> <p>11.4.1 Zero Power RAU PoF Network 238</p> <p>11.4.2 Battery Powered RRH PoF Network 238</p> <p>11.5 System and Power Consumption Model 238</p> <p>11.5.1 Remote Unit Power Consumption 240</p> <p>11.5.2 Centralized Unit Power Consumption 241</p> <p>11.5.3 Fronthaul Power Consumption 241</p> <p>11.5.4 Massive MIMO Energy Efficiency 242</p> <p>11.6 Simulation Results and Discussions 243</p> <p>11.7 Conclusion 245</p> <p>Acknowledgments 245</p> <p>Bibliography 245</p> <p><b>12 Fog Computing Enhanced Fiber-Wireless Access Networks in the 5G Era 249<br /></b><i>Bhaskar Prasad Rimal and Martin Maier</i></p> <p>12.1 Background and Motivation 249</p> <p>12.1.1 Next-Generation PON and Beyond 249</p> <p>12.1.2 FiWi Broadband Access Networks 251</p> <p>12.1.3 Role of Fog Computing 253</p> <p>12.1.4 Computation Offloading 253</p> <p>12.1.5 Key Issues and Contributions 255</p> <p>12.2 Fog Computing Enhanced FiWi Networks 257</p> <p>12.2.1 Network Architecture 257</p> <p>12.2.2 Protocol Description 259</p> <p>12.3 Analysis 259</p> <p>12.3.1 Survivability Analysis 259</p> <p>12.3.2 End-to-End Delay Analysis 262</p> <p>12.4 Implementation and Validation 263</p> <p>12.4.1 Experimental Testbed 264</p> <p>12.4.2 Results 264</p> <p>12.5 Conclusions and Outlook 267</p> <p>12.5.1 Conclusions 267</p> <p>12.5.2 Outlook 267</p> <p>Bibliography 268</p> <p><b>13 Techno-economic and Business Feasibility Analysis of 5G Transport Networks 273<br /></b><i>Forough Yaghoubi, Mozhgan Mahloo, Lena Wosinska, Paolo Monti, Fabricio S. Farias, Joao C. W. A. Costa, and Jiajia Chen</i></p> <p>13.1 Introduction 273</p> <p>13.2 Mobile Backhaul Technologies 275</p> <p>13.3 Techno-economic Framework 278</p> <p>13.3.1 Architecture Module 279</p> <p>13.3.2 Topology Module 279</p> <p>13.3.3 Market Module 280</p> <p>13.3.4 Network Dimensioning Tool 280</p> <p>13.3.5 Cost Module 280</p> <p>13.3.6 Total Cost of Ownership (TCO) Module 280</p> <p>13.3.6.1 Capital Expenditure (CAPEX) 281</p> <p>13.3.6.2 Operational Expenditure (OPEX) 281</p> <p>13.3.7 Business Models and Scenarios 283</p> <p>13.3.8 Techno-economic Module 283</p> <p>13.4 Case Study 284</p> <p>13.4.1 Application of Methodology/Scenarios 284</p> <p>13.4.2 Techno-economic Evaluation Results 286</p> <p>13.4.3 Sensitivity Analysis 289</p> <p>13.5 Conclusion 292</p> <p>Bibliography 293</p> <p>Index 297</p>
<p><b>ABDELGADER M. ABDALLA, P<small>H</small>D,</b> is a Senior Researcher at the Instituto de Telecomunicações, Aveiro, Portugal. He is acting as a work package leader/task leader for two ECSEL Innovation Actions European projects. He is also playing a leading international role on optical-wireless convergence research. <p><b>JONATHAN RODRIGUEZ, P<small>H</small>D,</b> is a Principal Investigator and founder of the Mobile Systems Research Lab at the Instituto de Telecomunicações, Aveiro, Portugal. He is also a full Professor at the University of South Wales, UK. <p><b>ISSA ELFERGANI, P<small>H</small>D,</b> is a Senior Researcher at the Instituto de Telecomunicações, Aveiro, Portugal, working as technical manager and work package leader on several national and international projects. He is an expert on Radio Communication. <p><b>ANTONIO TEIXEIRA, P<small>H</small>D,</b> is a Professor at the University of Aveiro and Principal Investigator at the Instituto de Telecomunicações, Portugal. He was with Nokia Siemens Networks and Coriant as a standardization expert in the field of optical access. He holds an EC in management and leadership from MIT Sloan School.
<p><b>A complete guide to optical-wireless from 5G and beyond</b> <p>The mobile market has experienced unprecedented growth over the last few decades. Consumer trends have shifted towards mobile internet services supported by 3G and 4G networks worldwide. Inherent to existing networks are problems such as lack of spectrum, high energy consumption, and inter-cell interference. These limitations have led to the emergence of 5G technology. It is clear that any 5G system will integrate optical communications, which is already a mainstay of wide area networks. Using an optical core to route 5G data raises significant questions of how wireless and optical can coexist in synergy to provide smooth, end-to-end communication pathways. <i>Optical and Wireless Convergence for 5G Networks</i> explores new emerging technologies, concepts, and approaches for seamlessly integrating optical-wireless for 5G and beyond. <p>Considering both fronthaul and backhaul perspectives, this timely book provides insights on managing an ecosystem of mixed and multiple access network communications focused on optical-wireless convergence. Topics include Fiber–Wireless (FiWi), Hybrid Fiber-Wireless (HFW), Visible Light Communication (VLC), 5G optical sensing technologies, approaches to real-time IoT applications, Tactile Internet, Fog Computing (FC), Network Functions Virtualization (NFV), Software-De???ned Networking (SDN), and many others. This book aims to provide an inclusive survey of 5G optical-wireless requirements, architecture developments, and technological solutions; in particular, this book: <ul> <li>Offers new insights on the highly relevant topic of 5G optical-wireless convergence</li> <li>Guides early-stage researchers by providing a solid platform on which to build future research</li> <li>Helps mobile/optical stakeholders to construct new project proposals that meet challenges associated with 5G and beyond at the international level</li> <li>Includes contributions from international experts at the forefront of 5G research representing industrial and academia stakeholders</li> <li>Presents background information suitable for a range of optical and wireless courses</li> </ul> <p><i>Optical and Wireless Convergence for 5G Networks</i> is an indispensable resource for fixed and mobile stakeholders, wireless industry professionals, graduate students and postdoctoral researchers, and those in related areas of telecommunications and electronic engineering.

Diese Produkte könnten Sie auch interessieren:

Pulsed Power
Pulsed Power
von: Gennady A. Mesyats
PDF ebook
309,23 €
High-Frequency Oscillator Design for Integrated Transceivers
High-Frequency Oscillator Design for Integrated Transceivers
von: J. van der Tang, Dieter Kasperkovitz, Arthur H.M. van Roermund
PDF ebook
149,79 €
MEMS Vibratory Gyroscopes
MEMS Vibratory Gyroscopes
von: Cenk Acar, Andrei Shkel
PDF ebook
149,79 €