Details

Plant Biomass Derived Materials


Plant Biomass Derived Materials

Sources, Extractions, and Applications
1. Aufl.

von: Seiko Jose, Sabu Thomas, Lata Samant, Sneha Sabu Mathew

169,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 09.02.2024
ISBN/EAN: 9783527839018
Sprache: englisch
Anzahl Seiten: 624

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Plant Biomass Derived Materials</b> <p><b>Comprehensive overview of materials derived from biomass, including extraction techniques, important building blocks, and a wide range of applications</b> <p><i>Plant Biomass Derived Materials</i> provides insights into the different sources and kinds of biomass and covers a variety of techniques to derive important building blocks from raw resources; after foundational knowledge is covered, the text continues to discuss a comprehensive list of materials and applications, ranging from nanomaterials, polymers, enzymes, dyes, and composites, to applications in energy, biomedical, water purification, aeronautics, automotive and food applications, and more. <p>Written by four highly qualified authors with significant experience in both industry and academia, <i>Plant Biomass Derived Materials</i> includes information on: <ul><li>Biomass and its relationship to the environment, chemistry of biomass, lignin and starch, and recent trends of cashew nutshell liquid in the field</li> <li>Plant biomass mucilage, plant based colorants, revival of sustainable fungal based natural pigments, and algal-based natural pigments for textiles</li> <li>Biorefinery from plant biomass (including a case study in sugarcane straw), forest and agricultural biomass, and manufacture of monomers and precursors</li> <li>Chemical routes for the transformation of bio-monomers into polymers and manufacture of polymer composites from plant fibers</li></ul> <p>Providing foundational knowledge on the subject and a wide array of specific applications of biomass, <i>Plant Biomass Derived Materials</i> is an essential resource for chemists, materials scientists, and all academics and professionals in fields that intersect with biomass: an abundant renewable resource used for many diverse purposes.
<p>Preface xix</p> <p><b>1 Biomass – An Environmental Concern 1<br /> </b><i>Deepak S. Khobragade</i></p> <p>1.1 Introduction 1</p> <p>1.2 Biomass as an Energy Source 4</p> <p>1.3 The Environmental Concern of Biomass 6</p> <p>1.4 Air Pollution 7</p> <p>1.4.1 Gaseous Emissions 7</p> <p>1.4.2 Dust 7</p> <p>1.4.3 Biomass Ash (Bottom Ash) 7</p> <p>1.4.4 Fly Ash 8</p> <p>1.4.5 Carbon Monoxide Poisoning 8</p> <p>1.5 Water Use and Water Pollution 8</p> <p>1.6 Impact on Soil 9</p> <p>1.7 Indoor Pollution 11</p> <p>1.8 Deforestation and Land Degradation 11</p> <p>1.9 Health Hazards 11</p> <p>1.10 Non-respiratory Illness 11</p> <p>1.10.1 In Children 11</p> <p>1.10.1.1 Lower Birth Weight 11</p> <p>1.10.1.2 Nutritional Deficiency 12</p> <p>1.10.2 Respiratory Illness in Adults 12</p> <p>1.10.2.1 Interstitial Lung Disease 12</p> <p>1.10.2.2 Chronic Obstructive Pulmonary Disease (COPD) 12</p> <p>1.10.2.3 Tuberculosis 12</p> <p>1.10.2.4 Lung Cancer 12</p> <p>1.10.3 Non-respiratory Illness in Adults 13</p> <p>1.10.3.1 Cardiovascular Disease 13</p> <p>1.10.3.2 Cataracts 13</p> <p>1.11 Safe Disposal of Biomass 13</p> <p>1.12 The Bioeconomy of the Biomass Utilization 15</p> <p>1.13 Biowaste-Derived Functional Materials 15</p> <p>1.14 Conclusion 16</p> <p>References 17</p> <p><b>2 Chemistry of Biomass 23<br /> </b><i>Wagner M. Cavalini, Breno M. Jóia, Diego E. R. Gonzaga, Rogério Marchiosi, Osvaldo Ferrarese-Filho, and dos Santos, Wanderley D.</i></p> <p>2.1 Introduction 23</p> <p>2.2 Cellulose 25</p> <p>2.3 Hemicellulose 26</p> <p>2.3.1 Xylans 27</p> <p>2.3.2 Mannans 27</p> <p>2.3.3 Arabinogalactans 28</p> <p>2.4 Pectin 28</p> <p>2.4.1 Homogalacturonan 29</p> <p>2.4.1.1 Rhamnogalacturonan I 29</p> <p>2.4.1.2 Rhamnogalacturonan II 29</p> <p>2.5 Lignin 30</p> <p>2.5.1 Lignin Valorization 31</p> <p>2.6 Reserve Compounds 31</p> <p>2.6.1 Starch 31</p> <p>2.6.2 Sucrose 32</p> <p>2.6.3 Lipids 33</p> <p>2.6.3.1 Fatty Acids 33</p> <p>2.6.3.2 Triacylglycerols 34</p> <p>2.7 Natural Compounds (Secondary Metabolites) 34</p> <p>2.7.1 Terpenoids 35</p> <p>2.7.2 Phenylpropanoids 35</p> <p>2.7.3 Alkaloids 36</p> <p>2.8 Conclusion 36</p> <p>References 37</p> <p><b>3 Lignin from Biomass − Sources, Extraction, and Application 43<br /> </b><i>Irwan Kurnia, Surachai Karnjanakom, and Guoqing Guan</i></p> <p>3.1 Sources 43</p> <p>3.2 Extraction 45</p> <p>3.2.1 Alkaline Process 47</p> <p>3.2.1.1 Sulfur Processes 47</p> <p>3.2.1.2 Sulfur-Free Processes 48</p> <p>3.2.2 Acidic Process 48</p> <p>3.2.2.1 Concentrated Acid Process (Klason Process) 49</p> <p>3.2.2.2 Dilute Acid Process 49</p> <p>3.2.3 Solvent-Assisted Extraction Processes 49</p> <p>3.2.3.1 Organosolv Process 49</p> <p>3.2.3.2 Aldehyde-Assisted Process 49</p> <p>3.2.3.3 GVL-Assisted Process 50</p> <p>3.2.3.4 Ionic Liquid Process 50</p> <p>3.2.3.5 Deep Eutectic Solvents Process 51</p> <p>3.2.4 Physical-Assisted Extraction Processes 51</p> <p>3.2.4.1 Milled-Wood Process 51</p> <p>3.2.4.2 Microwave-Assisted Process 51</p> <p>3.2.5 Enzymatic Process 52</p> <p>3.3 Application 53</p> <p>3.3.1 Lignin-Derived Nanomaterials 53</p> <p>3.3.1.1 Biomedical Materials 54</p> <p>3.3.1.2 Energy Storage Materials 55</p> <p>3.4 Summary and Outlook 57</p> <p>Acknowledgments 57</p> <p>References 58</p> <p><b>4 Starch from Biomass – Sources, Extraction, and Application 63<br /> </b><i>Abdelaziz Amir, Trache Djalal, Sahnoun Nassima, and Tarchoune A. Fouzi</i></p> <p>4.1 Introduction 63</p> <p>4.1.1 Starch Source 63</p> <p>4.1.2 Root and Tuber Starch Sources 63</p> <p>4.1.2.1 Potato 63</p> <p>4.1.2.2 Sweet Potato 65</p> <p>4.1.2.3 Cassava 67</p> <p>4.1.2.4 Yam 69</p> <p>4.1.3 Cereal Starch Sources 70</p> <p>4.1.3.1 Wheat 70</p> <p>4.1.3.2 Corn 72</p> <p>4.1.3.3 Rice 73</p> <p>4.1.3.4 Oats 74</p> <p>4.1.3.5 Barley 75</p> <p>4.1.4 Nonconventional Starch Sources 76</p> <p>4.1.4.1 Legumes 76</p> <p>4.1.4.2 Fruits 77</p> <p>4.2 Starch Extraction 80</p> <p>4.2.1 Milling Process and its Effect on Starch Structure 80</p> <p>4.2.1.1 Dry Milling 80</p> <p>4.2.1.2 Wet Milling 81</p> <p>4.2.1.3 Effect of the Milling Process on Starch Structure 81</p> <p>4.2.2 Examples of Starch Extraction from Different Sources 82</p> <p>4.2.2.1 Extraction of Starch from Tubers 82</p> <p>4.2.2.2 Extraction of Starch from Cereals and Pulses 83</p> <p>4.2.3 Nonconventionnel Extraction Techniques 85</p> <p>4.2.3.1 Ultrasound-assisted Milling 85</p> <p>4.2.3.2 Microwave-Assisted Starch Extraction 85</p> <p>4.2.3.3 Air-Classification Assisted Milling 86</p> <p>4.2.3.4 Electrostatic Separation 86</p> <p>4.2.3.5 Gluten Washing 87</p> <p>4.3 Starch Applications 87</p> <p>4.3.1 Medical Applications 87</p> <p>4.3.1.1 Drug Delivery Systems 87</p> <p>4.3.1.2 Surgical Sutures 88</p> <p>4.3.1.3 Bone Fixation and Regeneration 88</p> <p>4.3.1.4 Tissue Adhesion 89</p> <p>4.3.2 Water Treatment 89</p> <p>4.3.3 Agricultural Applications 90</p> <p>4.3.4 Packaging Applications 93</p> <p>4.3.5 Food Applications 94</p> <p>4.4 Conclusions 95</p> <p>References 96</p> <p><b>5 Recent Trends of Cashew Nutshell Liquid: Extraction, Chemistry, and Applications 117<br /> </b><i>Sixberth Mlowe and James Mgaya</i></p> <p>5.1 Introduction 117</p> <p>5.2 Global Production of Cashew in the World 118</p> <p>5.3 Extraction of CNSL 118</p> <p>5.3.1 Thermal Extraction 118</p> <p>5.3.2 Mechanical Extraction 119</p> <p>5.3.3 Solvent Extraction 120</p> <p>5.4 Isolation and the Chemistry of Major Components of CNSL 120</p> <p>5.4.1 Isolation of the Components of Natural CNSL 121</p> <p>5.4.2 Isolation of the Components of Technical CNSL 122</p> <p>5.5 Recent Developments in the Chemical Transformation and Uses of Cashew Nutshell Liquid 123</p> <p>5.5.1 Pharmaceutical Drugs from Cardanol 123</p> <p>5.5.2 Anthraquinone-Based Dyes from Anacardic Acid 125</p> <p>5.5.3 CNSL-Based UV Absorbers 126</p> <p>5.5.4 CNSL in Preparation of Bioactive Nanocarriers 127</p> <p>5.5.5 CNSL as a Green Catalyst 127</p> <p>5.5.6 CNSL-Derived Bifunctional Chemicals 128</p> <p>5.5.7 CNSL-Based Flame Retardants 129</p> <p>5.5.8 Use of Cashew Nutshell Liquid in the Synthesis of Nanomaterials 130</p> <p>5.5.9 Use of Cashew Nutshell for Decontamination of Polluted Environment 131</p> <p>5.5.10 Use of CNSL for Preparation of Resins, Adhesives, and Coatings 133</p> <p>5.6 Conclusions 134</p> <p>Acknowledgment 134</p> <p>References 134</p> <p><b>6 Plant Biomass Seed and Root Mucilage: Extraction and Properties 141<br /> </b><i>Mohsin A. Raza, Paul D. Hallett, and Waheed Afzal</i></p> <p>6.1 Introduction 141</p> <p>6.2 Extraction and Preparation Methods 144</p> <p>6.2.1 Mucilage Extraction and Preparation 144</p> <p>6.2.2 Other Mucilage Extraction Methods 144</p> <p>6.2.3 Model Compounds Preparation 145</p> <p>6.2.4 Density and Viscosity Measurements 145</p> <p>6.3 Results and Discussion 146</p> <p>6.3.1 Density 146</p> <p>6.3.2 Viscosity 149</p> <p>6.3.3 Model Compounds 152</p> <p>6.4 Conclusion 156</p> <p>References 157</p> <p><b>7 Plant-Based Colorants: Isolation and Application 159<br /> </b><i>Vandana Bhandari, Pratikhya Badanayak, and Seiko Jose</i></p> <p>7.1 Introduction 159</p> <p>7.2 Classification of Natural Colorants 160</p> <p>7.2.1 Classification Based on the Sources of Colorants 160</p> <p>7.2.1.1 Plant-Based Natural Colorants 160</p> <p>7.2.1.2 Colorant Obtained from Animal Sources 162</p> <p>7.2.1.3 Mineral-Based Natural Colorants 162</p> <p>7.2.1.4 Microbial and Fungal Origin 163</p> <p>7.2.2 Classification on the Basis of Chemical Constituents Present 163</p> <p>7.2.2.1 Indigoid Dyes 163</p> <p>7.2.2.2 Anthraquinone Dyes 164</p> <p>7.2.2.3 Naphthoquinone Dyes 164</p> <p>7.2.2.4 Flavonoid Dyes 165</p> <p>7.2.2.5 Carotenoid Dyes 165</p> <p>7.2.2.6 Tannin-Based Dyes 165</p> <p>7.2.3 Classification on the Basis of Colors Obtained 165</p> <p>7.2.3.1 Natural Yellow Dyes 165</p> <p>7.2.3.2 Natural Red Dyes 165</p> <p>7.2.3.3 Natural Blue Dyes 166</p> <p>7.2.3.4 Natural Black Dyes 166</p> <p>7.2.3.5 Natural Brown Dyes 166</p> <p>7.2.4 Classification on the Basis of Methods of Applications 166</p> <p>7.3 Extraction Methods of Naturally Occurring Colorants 167</p> <p>7.3.1 Conventional/Traditional Methods 167</p> <p>7.3.1.1 Aqueous Extraction 167</p> <p>7.3.1.2 Nonaqueous Extraction 168</p> <p>7.3.2 New Innovative/Modern Methods 169</p> <p>7.3.2.1 Radiation-Based Extraction (Gamma, Plasma, Microwave, Ultraviolet, and Ultrasonic Radiation) 169</p> <p>7.3.2.2 Gamma Radiation 170</p> <p>7.3.2.3 Ultraviolet Radiation 170</p> <p>7.3.2.4 Ultrasonic Radiation 170</p> <p>7.3.2.5 Supercritical Extraction 170</p> <p>7.3.2.6 Enzymatic Method 171</p> <p>7.4 Mordanting 171</p> <p>7.4.1 Metal Salts Mordants 172</p> <p>7.4.2 Oil Mordants 172</p> <p>7.4.3 Tannins 172</p> <p>7.5 Mordanting Methods 173</p> <p>7.6 Functional Properties of Natural Colorants 173</p> <p>7.6.1 Antimicrobial Property 173</p> <p>7.6.2 Deodorant Properties of Natural Dyes 175</p> <p>7.6.3 UV-Protection Property of Natural Dyes 175</p> <p>7.6.4 Insect-Repellent Properties of Natural Dyes 176</p> <p>7.7 Fastness Properties of Natural Dyes 176</p> <p>7.8 Advantages and Disadvantages of Natural Dyes 177</p> <p>7.8.1 Advantages 177</p> <p>7.8.2 Disadvantages 178</p> <p>7.9 Conclusion 178</p> <p>References 179</p> <p><b>8 Revival of Sustainable Fungal-Based Natural Pigments 189<br /> </b><i>Shahid Adeel, Amna Naseer, Bisma, Fazal-ur-Rehman, Noman Habib, and Atya Hassan</i></p> <p>8.1 Introduction 189</p> <p>8.2 Classification of Natural Dyes Based on Sources 190</p> <p>8.3 Fungal-Based Dyes and Pigments 190</p> <p>8.4 Classification of Fungal Pigments 190</p> <p>8.4.1 Species of the Trichocomaceae Family Producing Pigments 191</p> <p>8.4.1.1 Aspergillus 191</p> <p>8.4.1.2 Penicillium 193</p> <p>8.4.1.3 Talaromyces Species 194</p> <p>8.4.2 Species of the Monascaceae Family Producing Pigments 196</p> <p>8.4.2.1 Monascus purpureus 196</p> <p>8.4.3 Species of the Nectriaceae Family Producing Pigments 198</p> <p>8.4.3.1 Fusarium oxysporum 198</p> <p>8.4.3.2 Fusarium graminearum 199</p> <p>8.4.3.3 Fusarium fujikuroi 201</p> <p>8.4.4 Species of the Hypocreaceae Family Producing Pigments 202</p> <p>8.4.4.1 Trichoderma harzianum 202</p> <p>8.4.4.2 Trichoderma spirale 204</p> <p>8.4.5 Species of the Pleosporaceae Family Producing Pigments 205</p> <p>8.4.5.1 Pleosporaceae spp. (Alternaria, Curvularia, and Drechslera) 205</p> <p>8.5 Conclusion 207</p> <p>References 207</p> <p><b>9 Modern Approach Toward Algal-Based Natural Pigments for Textiles 213<br /> </b><i>Mahwish Salman, Shahid Adeel, Mehwish Naseer, Muhammad Zulqurnain Haider, and Fozia Anjum</i></p> <p>9.1 Introduction 213</p> <p>9.1.1 Bio-Pigments 216</p> <p>9.2 Diversity of Bio-Pigments Present in Algae 216</p> <p>9.2.1 Chlorophyll 217</p> <p>9.2.2 Carotenoids 218</p> <p>9.2.3 Phycobilisomes 218</p> <p>9.2.4 Phycobilins 219</p> <p>9.2.5 Phycocyanin 219</p> <p>9.2.6 Phycoerythrin 220</p> <p>9.3 Extraction Methods of Bio-Pigments 220</p> <p>9.4 Conventional Extraction Methods 220</p> <p>9.4.1 Classic Extraction 220</p> <p>9.4.1.1 Solvent-Based Extraction 220</p> <p>9.4.1.2 Thermal Treatment 221</p> <p>9.4.1.3 Freeze-Thaw Method 221</p> <p>9.4.1.4 Enzymatic Extraction 221</p> <p>9.4.2 Modern Extraction Methods 222</p> <p>9.4.2.1 Pressurized Systems 222</p> <p>9.4.2.2 Wave-Energy-Based Cell Disruption 222</p> <p>9.4.2.3 Cell Milking 224</p> <p>9.4.2.4 Electroextraction 224</p> <p>9.4.2.5 Supercritical Fluid Extraction 225</p> <p>9.4.3 Novel Extraction Methodologies 225</p> <p>9.4.3.1 Laser 226</p> <p>9.4.3.2 Hydrodynamic Cavitation 226</p> <p>9.4.3.3 High Voltage Electrical Discharge (HVED) 226</p> <p>9.4.3.4 Ohmic Heating (OH) 226</p> <p>9.5 Algal-Based Natural Dyes 227</p> <p>9.6 Bio-Pigments in the Textile Industry 229</p> <p>9.7 Utilization of Algal-Based Natural Dyes in Different Industries 230</p> <p>9.8 Future Prospective of Algal-Based Bio-Pigments 231</p> <p>9.9 Conclusion 232</p> <p>References 233</p> <p><b>10 Biorefinery from Plant Biomass: A Case Study on Sugarcane Straw 243<br /> </b><i>Fahriya P. Sari, Nissa N. Solihat, Nur I. W. Azelee, and Widya Fatriasari</i></p> <p>10.1 Introduction 243</p> <p>10.2 Biorefinery Concept and Current Trend 245</p> <p>10.3 Biorefinery Concepts for Sugarcane Straw Valorization 250</p> <p>10.3.1 Cellulose-Derived Bioproducts (Isolation, Characterization, Derivative Products) 250</p> <p>10.3.1.1 Bioethanol 250</p> <p>10.3.1.2 Cellulose Nanofiber (CNF) and Cellulose Nanocrystal (CNC) 253</p> <p>10.3.1.3 Biomethane 253</p> <p>10.3.1.4 Biohydrogen 254</p> <p>10.3.2 Hemicellulose-Derived Bioproducts (Isolation, Characterization, Derivative Products) 254</p> <p>10.3.2.1 Xylose and Xylooligosaccharides Derived from Hemicellulosic Sugarcane Straw 258</p> <p>10.3.2.2 Xylitol Derived from Hemicellulosic Sugarcane Straw 258</p> <p>10.3.2.3 Furfural Derived from Hemicellulosic Sugarcane Straw 259</p> <p>10.3.2.4 Alcohols and Biogas Derived from Hemicellulosic Sugarcane Straw 259</p> <p>10.3.3 Lignin-Derived Bioproducts (Isolation, Characterization, Derivative Products) 259</p> <p>10.3.4 Other Components (Extractives and Ash) Derived Bioproducts 260</p> <p>10.4 Challenges and Future Perspectives 262</p> <p>10.5 Conclusion 263</p> <p>Acknowledgment 263</p> <p>References 263</p> <p><b>11 Forest and Agricultural Biomass 271<br /> </b><i>Mohd H. Mohamad Amini</i></p> <p>11.1 Introduction 271</p> <p>11.2 Forest Sources 272</p> <p>11.2.1 Virgin and Natural Forest 272</p> <p>11.2.1.1 Hardwood 273</p> <p>11.2.1.2 Softwood 273</p> <p>11.3 Plantation Forest 274</p> <p>11.3.1 Timber Species 275</p> <p>11.3.1.1 Acacia mangium 275</p> <p>11.3.1.2 Rubber Tree 276</p> <p>11.3.1.3 Pinus radiata 276</p> <p>11.3.1.4 Tectona grandis 276</p> <p>11.3.2 Non-timber Species 276</p> <p>11.3.2.1 Bamboo 277</p> <p>11.3.2.2 Jute and Kenaf 278</p> <p>11.4 Agricultural Biomass 279</p> <p>11.4.1 Corn/Maize 279</p> <p>11.4.2 Sugarcane 280</p> <p>11.4.3 Oil Palm 280</p> <p>11.4.4 Wheat 281</p> <p>11.4.5 Cassava 282</p> <p>11.4.6 Coconut 283</p> <p>11.4.7 Rice 284</p> <p>11.4.8 Others 284</p> <p>11.5 Biomass Extraction and Application 285</p> <p>11.6 Conclusion and Prospect 286</p> <p>References 286</p> <p><b>12 Manufacture of Monomers and Precursors from Plant Biomass 291<br /> </b><i>Catarina P. Gomes, Amir Bzainia, Ayssata Almeida, Cláudia Martins, Rolando C.S. Dias, and Mário Rui P.F.N. Costa</i></p> <p>12.1 Introduction 291</p> <p>12.2 Industrially Relevant Monomers and Precursors from Plant Biomass 295</p> <p>12.2.1 Saccharides 295</p> <p>12.2.2 Ethanol 298</p> <p>12.2.3 Lactic Acid 300</p> <p>12.2.4 Itaconic Acid 302</p> <p>12.2.5 Succinic Acid 302</p> <p>12.2.6 Sorbitol and Xylitol 303</p> <p>12.2.7 5-Hydroxymethylfurfural 303</p> <p>12.2.8 Hydroxy Acids for Poly(Hydroxyalkanoates) 304</p> <p>12.2.9 Further Chemicals with Practical Relevance 306</p> <p>12.3 Other Monomers and Precursors Through the Biotechnological Pathway 312</p> <p>12.4 Other Monomers and Precursors Through the Catalytic Pathway 313</p> <p>12.5 Conclusion 314</p> <p>Abbreviations 314</p> <p>Acknowledgments 315</p> <p>References 316</p> <p><b>13 Chemical Routes for the Transformation of Bio-monomers into Polymers 329<br /> </b><i>Catarina P. Gomes, Amir Bzainia, Ayssata Almeida, Cláudia Martins, Rolando C.S. Dias, and Mário Rui P.F.N. Costa</i></p> <p>13.1 Introduction 329</p> <p>13.2 Main Chemical Routes for the Transformation of Bio-monomers into Polymers 329</p> <p>13.2.1 Ring-Opening Polymerization 330</p> <p>13.2.2 Condensation Polymerization 333</p> <p>13.2.3 Free Radical Polymerization 336</p> <p>13.3 Exploitation of Olive Tree and Olive Oil Residues as Feedstock for Biopolymers Production 339</p> <p>13.3.1 Second Generation Bioethanol and Platform Chemicals for the Polymer Industries from Lignocellulosic Fractions 341</p> <p>13.3.2 Polyhydroxyalkanoates 342</p> <p>13.3.3 Exploitation of Residual Oils from Olive Mills and Olive Pomace to Get Polymerizable Monomers 343</p> <p>13.3.4 Polyphenols in Olive Tree Residues for Advanced Functional Polymers 343</p> <p>13.4 Exploitation of Winemaking Residues for Biopolymers Production 345</p> <p>13.4.1 Bioethanol 345</p> <p>13.4.2 Lactic Acid, Xylitol and Furfural 346</p> <p>13.4.3 Succinic Acid 346</p> <p>13.4.4 Poly(hydroxyalkanoates) 347</p> <p>13.4.5 Bio-oils from Winemaking Residues for Generation of Polymerizable Monomers 347</p> <p>13.4.6 Polyphenols in Winery Residues for Advanced Functional Polymers 348</p> <p>13.5 Conclusion 348</p> <p>Abbreviations 349</p> <p>Acknowledgments 350</p> <p>References 350</p> <p><b>14 Manufacture of Polymer Composites from Plant Fibers 363<br /> </b><i>Md. Reazuddin Repon, Tarekul Islam, Tarikul Islam, and Md. Abdul Alim</i></p> <p>14.1 Introduction 363</p> <p>14.2 Biocomposites 365</p> <p>14.2.1 Plant-based Natural Fibers 366</p> <p>14.2.2 Polymer Matrix 367</p> <p>14.3 Fiber Treatment and Modification 371</p> <p>14.4 Fabrication of Composites 373</p> <p>14.5 Mechanical Properties of Micro and Nanopolymer Composites 376</p> <p>14.6 Biodegradability of Micro and Nano-Polymer Compounds 377</p> <p>14.7 Potential Application Areas of Micro and Nanopolymer Composites 378</p> <p>14.8 Conclusion 381</p> <p>References 382</p> <p><b>15 Lignin-Based Composites and Nanocomposites 389<br /> </b><i>Rubén Teijido, Julia Sanchez-Bodón, Antonio Veloso-Fernández, Leyre Pérez-Álvarez, Ana C. Lopes, Isabel Moreno-Benítez, José L. Vilas-Vilela, and Leire Ruiz-Rubio</i></p> <p>15.1 Lignin Introduction 389</p> <p>15.2 Synthesis of Lignin-Based Nanoparticles 393</p> <p>15.2.1 Acid-Catalyzed Precipitation 393</p> <p>15.2.2 Flash Precipitation and Nanoprecipitation 394</p> <p>15.2.3 Solvent Exchange 395</p> <p>15.2.4 Water-in-Oil (W/O) Microemulsion Methods 395</p> <p>15.2.5 Homogenization and Ultrasonication 395</p> <p>15.3 Lignin Properties and Applications 396</p> <p>15.3.1 Lignin Nanoparticles–Matrix Interactions 397</p> <p>15.3.2 High-Temperature Requiring Applications 398</p> <p>15.3.3 Biomedical Applications 400</p> <p>15.3.4 Environmental Applications 402</p> <p>15.3.5 Energy Storage, Catalysis, and Electrochemistry Applications 405</p> <p>15.3.5.1 Catalysis and Environmental Remediation 405</p> <p>15.3.5.2 Energy Storage Applications: Electrodes and Supercapacitors 406</p> <p>15.3.6 Civil Engineering Applications (Construction, Protective Coatings, and Mechanical Reinforcing Applications) 406</p> <p>15.4 Conclusion and Future Work 407</p> <p>Acknowledgments 412</p> <p>References 412</p> <p><b>16 Bio Plastics from Biomass 421<br /> </b><i>Alcides L. Leao, Ivana Cesarino, Milena C. de Souza, Ivan Moroz, and Mohammad Jawaid</i></p> <p>16.1 Introduction 421</p> <p>16.2 Types and Applications of Bioplastics 422</p> <p>16.3 Global Market 427</p> <p>16.4 Bioplastics Processing and Applications 429</p> <p>16.4.1 Polyamides 430</p> <p>16.4.2 Pp 431</p> <p>16.4.3 PBAT and PBS 432</p> <p>16.4.4 Cellulose 432</p> <p>16.5 Conclusion 434</p> <p>Acknowledgments 434</p> <p>References 434</p> <p><b>17 Plant-based Materials for Energy Application 441<br /> </b><i>Patrick U. Okoye, Diego R. Lobato-Peralta, José L. Alemán-Ramirez, Estefania Duque-Brito, Dulce M. Arias, Jude A. Okolie, and Pathiyamattom J. Sebastian</i></p> <p>17.1 Introduction 441</p> <p>17.2 Plant-based Lignocellulosic Biomass 442</p> <p>17.2.1 Composition and Extraction of Lignocellulosic Components 442</p> <p>17.2.2 Conversion of Plant-based Biomass Into Activated Carbon 443</p> <p>17.2.3 Types of Activation 444</p> <p>17.3 Reactor Configuration 445</p> <p>17.4 Plant-based Carbon Materials for Energy Storage Purposes 447</p> <p>17.4.1 Supercapacitors 448</p> <p>17.4.2 Hydrogen Storage 449</p> <p>17.4.3 Microbial Fuel Cells 450</p> <p>17.4.4 Plant-based Catalysts for Biodiesel Synthesis 451</p> <p>17.4.4.1 Green Heterogeneous Catalysts 452</p> <p>17.4.4.2 Development and Activation of Green Heterogeneous Catalysts 452</p> <p>17.5 Challenges 456</p> <p>17.6 Conclusions and Recommendations 456</p> <p>References 457</p> <p><b>18 Plant Biomass for Water Purification Applications 465<br /> </b><i>Humayra A. Himu, Tanvir M. Dip, Ayesha S. Emu, A T M F. Ahmed, and Md. Syduzzaman</i></p> <p>18.1 Introduction 465</p> <p>18.2 Sources of Plant Biomass Used for Water Purification 469</p> <p>18.2.1 Agricultural Peel-Based Biomass 471</p> <p>18.2.2 Leaf-Based Biomass 471</p> <p>18.2.3 Stems and Roots-Based Biomass 472</p> <p>18.2.4 Powder and Dust-Based Biomass 472</p> <p>18.2.5 Floating Plants, Beds, and Wetlands 473</p> <p>18.3 Modification of Plant Biomass 473</p> <p>18.3.1 Physical Modification 473</p> <p>18.3.2 Chemical Modification 474</p> <p>18.3.2.1 Chemically Modified Plant Biomass for Water Purification 474</p> <p>18.3.2.2 Three-Dimensional Porous Cake-Like Biosorbent 474</p> <p>18.3.3 Thermochemical Modification 477</p> <p>18.3.3.1 Plant Biomass-Derived Biochar 477</p> <p>18.3.3.2 Plant Biomass-Derived AC 477</p> <p>18.4 Plant Biomass-Based Water Purification Processes/Techniques 479</p> <p>18.4.1 Adsorbent-Based Process 480</p> <p>18.4.2 Solar Steam Generation (SSG) Device for Desalination and Filtration 481</p> <p>18.4.3 Biosorption 482</p> <p>18.4.4 Membrane Filtration 485</p> <p>18.5 Purification Mechanism 486</p> <p>18.5.1 For Dye Removal 486</p> <p>18.5.2 For Heavy Metal Removal 487</p> <p>18.5.3 For Other Compounds Removal 489</p> <p>18.6 Sector-Based Water Purification 489</p> <p>18.6.1 Drinking Water 491</p> <p>18.6.2 Industrial Wastewater 493</p> <p>18.6.3 Domestic Wastewater 494</p> <p>18.6.4 Agricultural Wastewater 494</p> <p>18.7 Regeneration and Reuse 495</p> <p>18.8 Limitations, Challenges, and Future Outlooks 497</p> <p>18.9 Conclusion 498</p> <p>References 498</p> <p><b>19 Sustainable Biocomposite-Based Biomass for Aerospace Applications 517<br /> </b><i>Mazlan Norkhairunnisa, Tay Chai Hua, Farid Bajuri, Izzat N. Yaacob, and Kamarul A. Ahmad</i></p> <p>19.1 Introduction 517</p> <p>19.2 Bioresin 518</p> <p>19.2.1 Biodegradability and Properties of Sustainable Bioresin 519</p> <p>19.3 Biocomposite 523</p> <p>19.3.1 Design of Biocomposite for Aerospace Application Reinforcement 524</p> <p>19.3.1.1 Plant-Based Fiber 524</p> <p>19.3.1.2 Animal-Based Fiber 524</p> <p>19.3.1.3 Biofillers 525</p> <p>19.3.2 Material Selection and Its Properties in Aerospace Applications 525</p> <p>19.3.3 Biocomposite Performances and Applications in Aerospace Structure Design 526</p> <p>19.3.3.1 Advantageous and Disadvantageous of Composite in Aerospace Applications 526</p> <p>19.3.3.2 Application of Biocomposite in Aircraft Structure 527</p> <p>19.3.4 Sustainability and Environmental Effects 528</p> <p>19.4 Summary 529</p> <p>References 530</p> <p><b>20 Biomass-based Food Packaging 537<br /> </b><i>Asif Hafeez, Madeha Jabbar, Yasir Nawab, and Khubab Shaker</i></p> <p>20.1 Food Packaging Materials 537</p> <p>20.2 Food Packaging Material Perquisites 539</p> <p>20.2.1 Food Packaging Properties 540</p> <p>20.2.1.1 Thermal Properties 540</p> <p>20.2.1.2 Mechanical Properties 540</p> <p>20.2.1.3 Chemical Reactivity 540</p> <p>20.2.1.4 Optical Properties 541</p> <p>20.2.1.5 Gas Barrier Properties 541</p> <p>20.2.1.6 Moisture Barrier Properties 541</p> <p>20.2.1.7 Durability 541</p> <p>20.2.2 Packaged Product Characteristics 542</p> <p>20.2.3 Individual Package Properties 542</p> <p>20.2.4 Storage and Distribution Conditions 543</p> <p>20.3 Environmental Impact of Conventional Food Packaging 543</p> <p>20.4 Sources of Biomass 545</p> <p>20.5 Processing of Biomass to Food Packaging 545</p> <p>20.5.1 Thermoplasticization of Biomass 546</p> <p>20.5.2 Film Blowing 547</p> <p>20.5.3 Foaming Technology 547</p> <p>20.6 Food Packaging from Agricultural Biomass 547</p> <p>20.6.1 Rice Straw 548</p> <p>20.6.2 Wheat Straw 549</p> <p>20.6.3 Sugarcane Bagasse 549</p> <p>20.7 Conclusion 550</p> <p>References 550</p> <p><b>21 Recycling Plant Biomass and Life Cycle Assessment in Circular Economy Systems 557<br /> </b><i>Joan Nyika, Megersa Dinka, and Adeolu Adesoji Adediran</i></p> <p>21.1 Introduction 557</p> <p>21.2 Process of Recycling Plant Biomass 558</p> <p>21.2.1 Gasification of Plant Biomass 559</p> <p>21.2.2 Pyrolysis of Plant Biomass 560</p> <p>21.2.3 Combustion of Plant Biomass 561</p> <p>21.2.4 Biological Conversion of Plant Biomass 562</p> <p>21.3 Processes of Life Cycle Assessment 562</p> <p>21.4 Literature Review on Life Cycle Assessment for Plant Biomass Recycling 564</p> <p>21.5 Conclusion 568</p> <p>References 568</p> <p><b>22 The Handling, Storage, and Preservation of Plant Biomass 575<br /> </b><i>Joan Nyika, Megersa Dinka, and Adeolu A. Adediran</i></p> <p>22.1 Introduction 575</p> <p>22.2 Characteristics of Plant Biomass 576</p> <p>22.3 Handling of Plant Biomass 578</p> <p>22.4 Storage and Preservation of Plant Biomass 580</p> <p>22.4.1 Dry Storage Systems 581</p> <p>22.4.2 Wet Storage Systems 583</p> <p>22.4.3 Preservation of Plant Biomass 584</p> <p>22.5 Conclusion 586</p> <p>References 586</p> <p>Index 591</p>
<p><i><b>Seiko Jose</b> is a scientist at Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, India.</i> <p><i><b>Sabu Thomas</b> is the Director of Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala, India.</i> <p><i><b>Lata Samant</b> is a research scholar at G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India.</i> <p><i><b>Sneha Sabu Mathew</b> is a research scholar at Mahatma Gandhi University, Kottayam, Kerala, India.</i>
<p><b>Comprehensive overview of materials derived from biomass, including extraction techniques, important building blocks, and a wide range of applications</b> <p><i>Plant Biomass Derived Materials</i> provides insights into the different sources and kinds of biomass and covers a variety of techniques to derive important building blocks from raw resources; after foundational knowledge is covered, the text continues to discuss a comprehensive list of materials and applications, ranging from nanomaterials, polymers, enzymes, dyes, and composites, to applications in energy, biomedical, water purification, aeronautics, automotive and food applications, and more. <p>Written by four highly qualified authors with significant experience in both industry and academia, <i>Plant Biomass Derived Materials</i> includes information on: <ul><li>Biomass and its relationship to the environment, chemistry of biomass, lignin and starch, and recent trends of cashew nutshell liquid in the field</li> <li>Plant biomass mucilage, plant based colorants, revival of sustainable fungal based natural pigments, and algal-based natural pigments for textiles</li> <li>Biorefinery from plant biomass (including a case study in sugarcane straw), forest and agricultural biomass, and manufacture of monomers and precursors</li> <li>Chemical routes for the transformation of bio-monomers into polymers and manufacture of polymer composites from plant fibers</li></ul> <p>Providing foundational knowledge on the subject and a wide array of specific applications of biomass, <i>Plant Biomass Derived Materials</i> is an essential resource for chemists, materials scientists, and all academics and professionals in fields that intersect with biomass: an abundant renewable resource used for many diverse purposes.

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €