TABLE
OF THE
PRINCIPAL ADDITIONS AND CORRECTIONS TO THE PRESENT EDITION.

First
Edition
Vol. I.
Present
Edition.

Page Page
22 15-17 Discussion on the rudimentary points in the human ear revised.
26 19 Cases of men born with hairy bodies.
27, note. 20, note. Muntegazza on the last molar tooth in man.
29 23 The rudiments of a tail in man.
32, note. 24, note. Bianconi on homologous structures, as explained by adaptation on mechanical principles.
40 70 Intelligence in a baboon.
42 71 Sense of humour in dogs.
44 72–3 Further facts on imitation in man and animals.
47 75 Reasoning power in the lower animals.
50 80 Acquisition of experience by animals.
53 83 Power of abstraction in animals.
58 88–9 Power of forming concepts in relation to language.
64 92 Pleasure from certain sounds, colours, and forms.
78 104 Fidelity in the elephant.
79 104 Galton on gregariousness of cattle.
81 105–6 Parental affection.
90, note. 112–113, note. Persistence of enmity and hatred.
91 114 Nature and strength of shame, regret, and remorse.
94 117, note. Suicide amongst savages.
97 120, note. The motives of conduct.
112 28 Selection, as applied to primeval man.
122 35–6 Resemblances between idiots and animals.
124, note. 39, note. Division of the malar bone.
125, note. 36–8, note. Supernumerary mammæ and digits.
128–9 41–2 Further cases of muscles proper to animals appearing in man.
146 55, note. Broca: average capacity of skull diminished by the preservation of the inferior members of society.
149 57 Belt on advantages to man from his hairlessness.
150 58–9 Disappearance of the tail in man and certain monkeys.
169 134–5 Injurious forms of selection in civilised nations.
180 143 Indolence of man, when free from a struggle for existence,
193 151 Gorilla protecting himself from rain with his hands.
208, note. 161, note. Hermaphroditism in fish.
209 163 Rudimentary mammæ in male mammals.
239 188–190 Changed conditions lessen fertility and cause ill-health amongst savages.
245 195–6 Darkness of skin a protection against the sun.
250 199–206 Note by Professor Huxley on the development of the brain in man and apes.
256 209–210 Special organs of male parasitic worms for holding the female.
275–6 224–5 Greater variability of male than female; direct action of the environment in causing differences between the sexes.
290 235 Period of development of protuberances on birds' heads determines their transmission to one or both sexes.
301 243–4 Causes of excess of male births.
314 254 Proportion of the sexes in the bee family.
315 255–6 Excess of males perhaps sometimes determined by selection.
327 264 Bright colours of lowly organised animals.
338 272 Sexual selection amongst spiders.
339 273 Cause of smallness of male spiders.
345 277 Use of phosphorescence of the glow-worm.
349 280 The humming noises of flies.
350 281 Use of bright colours to Hemiptera (bugs).
351 282 Musical apparatus of Homoptera.
354
359
284–5
288, note.
Development of stridulating apparatus in Orthoptera.
366 292–3 Hermann Müller on sexual differences of bees.
387 308 Sounds produced by moths.
397 315 Display of beauty by butterflies.
401 319 Female butterflies, taking the more active part in courtship, brighter than their males.
412 324–5 Further cases of mimicry in butterflies and moths.
417 326 Cause of bright and diversified colours of caterpillars.
First
Edition
Vol. II.
Present
Edition.

Page Page
2 331 Brush-like scales of male Mallotus.
14 341 Further facts on courtship of fishes, and the spawning of Macropus.
23 347 Dufossé on the sounds made by fishes.
26 349 Belt on a frog protected by bright colouring.
30 352 Further facts on mental powers of snakes.
32 353 Sounds produced by snakes; the rattlesnake.
36 357 Combats of Chameleons.
72 383 Marshall on protuberances on birds' heads.
91 398 Further facts on display by the Argus pheasant.
108 411 Attachment between paired birds.
118 417 Female pigeon rejecting certain males.
120 419 Albino birds not finding partners, in a state of nature.
124 423 Direct action of climate on birds' colours.
147–150 438–441 Further facts on the ocelli in the Argus pheasant.
152 443 Display by humming-birds in courtship.
157 446 Cases with pigeons of colour transmitted to one sex alone.
232 495–6 Taste for the beautiful permament enough to allow of sexual selection with the lower animals.
247 505 Horns of sheep originally a masculine character.
248 506 Castration affecting horns of animals.
256 513–4 Prong-horned variety of Cervus virginianus.
260 516 Relative sizes of male and female whales and seals.
266 521 Absence of tusks in male miocene pigs.
286 534 Dobson on sexual differences of bats.
299 542–3 Recks on advantage from peculiar colouring.
316 556 Difference of complexion in men and women of an African tribe.
337 572 Speech subsequent to singing.
356 586 Schopenhauer on importance of courtship to mankind.
359 et seq. 588 et seq. Revision of discussion on communal marriages and promiscuity.
373 598–9 Power of choice of woman in marriage, amongst savages.
380 603 Long-continued habit of plucking out hairs may produce an inherited effect.

INTRODUCTION.

Table of Contents

The nature of the following work will be best understood by a brief account of how it came to be written. During many years I collected notes on the origin or descent of man, without any intention of publishing on the subject, but rather with the determination not to publish, as I thought that I should thus only add to the prejudices against my views. It seemed to me sufficient to indicate, in the first edition of my 'Origin of Species,' that by this work "light would be thrown on the origin of man and his history"; and this implies that man must be included with other organic beings in any general conclusion respecting his manner of appearance on this earth. Now the case wears a wholly different aspect. When a naturalist like Carl Vogt ventures to say in his address as President of the National Institution of Geneva (1869), "personne, en Europe au moins, n'ose plus soutenir la création indépendante et de toutes pièces, des espèces," it is manifest that at least a large number of naturalists must admit that species are the modified descendants of other species; and this especially holds good with the younger and rising naturalists. The greater number accept the agency of natural selection; though some urge, whether with justice the future must decide, that I have greatly overrated its importance. Of the older and honoured chiefs in natural science, many unfortunately are still opposed to evolution in every form.

In consequence of the views now adopted by most naturalists, and which will ultimately, as in every other case, be followed by others who are not scientific, I have been led to put together my notes, so as to see how far the general conclusions arrived at in my former works were applicable to man. This seemed all the more desirable, as I had never deliberately applied these views to a species taken singly. When we confine our attention to any one form, we are deprived of the weighty arguments derived from the nature of the affinities which connect together whole groups of organisms—their geographical distribution in past and present times, and their geological succession. The homological structure, embryological development, and rudimentary organs of a species remain to be considered, whether it be man or any other animal, to which our attention may be directed; but these great classes of facts afford, as it appears to me, ample and conclusive evidence in favour of the principle of gradual evolution. The strong support derived from the other arguments should, however, always be kept before the mind.

The sole object of this work is to consider, firstly, whether man, like every other species, is descended from some pre-existing form; secondly, the manner of his development; and thirdly, the value of the differences between the so-called races of man. As I shall confine myself to these points, it will not be necessary to describe in detail the differences between the several races—an enormous subject which has been fully discussed in many valuable works. The high antiquity of man has recently been demonstrated by the labours of a host of eminent men, beginning with M. Boucher de Perthes; and this is the indispensable basis for understanding his origin. I shall, therefore, take this conclusion for granted, and may refer my readers to the admirable treatises of Sir Charles Lyell, Sir John Lubbock, and others. Nor shall I have occasion to do more than to allude to the amount of difference between man and the anthropomorphous apes; for Prof. Huxley, in the opinion of most competent judges, has conclusively shewn that in every visible character man differs less from the higher apes, than these do from the lower members of the same order of primates.

This work contains hardly any original facts in regard to man; but as the conclusions at which I arrived, after drawing up a rough draft, appeared to me interesting, I thought that they might interest others. It has often and confidently been asserted, that man's origin can never be known: but ignorance more frequently begets confidence than does knowledge: it is those who know little, and not those who know much, who so positively assert that this or that problem will never be solved by science. The conclusion that man is the co-descendant with other species of some ancient, lower, and extinct form, is not in any degree new. Lamarck long ago came to this conclusion, which has lately been maintained by several eminent naturalists and philosophers; for instance, by Wallace, Huxley, Lyell, Vogt, Lubbock, Büchner, Rolle, &c.,1 and especially by Häckel. This last naturalist, besides his great work, 'Generelle Morphologie' (1866), has recently (1868, with a second edit. in 1870), published his 'Natürliche Schöpfungsgeschichte,' in which he fully discusses the genealogy of man. If this work had appeared before my essay had been written, I should probably never have completed it. Almost all the conclusions at which I have arrived I find confirmed by this naturalist, whose knowledge on many points is much fuller than mine. Wherever I have added any fact or view from Prof. Häckel's writings, I give his authority in the text; other statements I leave as they originally stood in my manuscript, occasionally giving in the foot-notes references to his works, as a confirmation of the more doubtful or interesting points.

During many years it has seemed to me highly probable that sexual selection has played an important part in differentiating the races of man; but in my 'Origin of Species' (fisrt edition, p. 199) I contented myself by merely alluding to this belief. When I came to apply this view to man, I found it indispensable to treat the whole subject in full detail.2 Consequently the second part of the present work, treating of sexual selection, has extended to an inordinate length, compared with the first part; but this could not be avoided.

I had intended adding to the present volumes an essay on the expression of the various emotions by man and the lower animals. My attention was called to this subject many years ago by Sir Charles Bell's admirable work. This illustrious anatomist maintains that man is endowed with certain muscles solely for the sake of expressing his emotions. As this view is obviously opposed to the belief that man is descended from some other and lower form, it was necessary for me to consider it. I likewise wished to ascertain how far the emotions are expressed in the same manner by the different races of man. But owing to the length of the present work, I have thought it better to reserve my essay for separate publication.



1. As the works of the first-named authors are so well known, I need not give the titles; but as those of the latter are less well known in England, I will give them:—'Sechs Vorlesungen über die Darwin'sche Theorie:' zweite Auflage, 1868, von Dr. L. Büchner; translated into French under the title 'Conférences sur la Théorie Darwinienne,' 1869. 'Der Mensch, im Lichte der Darwin'schen Lehre,' 1865, von Dr. F. Rolle. I will not attempt to give references to all the authors who have taken the same side of the question. Thus G. Canestrini has published ('Annuario della Soc. d. Nat.,' Modena, 1867, p. 81) a very curious paper on rudimentary characters, as bearing on the origin of man. Another work has (1869) been published by Dr. Francesco Barrago, bearing in Italian the title of "Man, made in the image of God, was also made in the image of the ape."

2. Prof. Häckel was the only author who, at the time when this work first appeared, had discussed the subject of sexual selection, and had seen its full importance, since the publication of the 'Origin'; and this he did in a very able manner in his various works.

PREFACE TO THE SECOND EDITION.

During the successive reprints of the first edition of this work, published in 1871, I was able to introduce several important corrections; and now that more time has elapsed, I have endeavoured to profit by the fiery ordeal through which the book has passed, and have taken advantage of all the criticisms which seem to me sound. I am also greatly indebted to a large number of correspondents for the communication of a surprising number of new facts and remarks. These have been so numerous, that I have been able to use only the more important ones; and of these, as well as of the more important corrections, I will append a list. Some new illustrations have been introduced, and four of the old drawings have been replaced by better ones, done from life by Mr. T. W. Wood. I must especially call attention to some observations which I owe to the kindness of Prof. Huxley (given as a supplement at the end of Part I.), on the nature of the differences between the brains of man and the higher apes. I have been particularly glad to give these observations, because during the last few years several memoirs on the subject have appeared on the Continent, and their importance has been, in some cases, greatly exaggerated by popular writers.

I may take this opportunity of remarking that my critics frequently assume that I attribute all changes of corporeal structure and mental power exclusively to the natural selection of such variations as are often called spontaneous; whereas, even in the first edition of the 'Origin of Species,' I distinctly stated that great weight must be attributed to the inherited effects of use and disuse, with respect both to the body and mind. I also attributed some amount of modification to the direct and prolonged action of changed conditions of life. Some allowance, too, must be made for occasional reversions of structure; nor must we forget what I have called "correlated" growth, meaning, thereby, that various parts of the organisation are in some unknown manner so connected, that when one part varies, so do others; and if variations in the one are accumulated by selection, other parts will be modified. Again, it has been said by several critics, that when I found that many details of structure in man could not be explained through natural selection, I invented sexual selection; I gave, however, a tolerably clear sketch of this principle in the first edition of the 'Origin of Species,' and I there stated that it was applicable to man. This subject of sexual selection has been treated at full length in the present work, simply because an opportunity was here first afforded me. I have been struck with the likeness of many of the half-favourable criticisms on sexual selection, with those which appeared at first on natural selection; such as, that it would explain some few details, but certainly was not applicable to the extent to which I have employed it. My conviction of the power of sexual selection remains unshaken; but it is probable, or almost certain, that several of my conclusions will hereafter be found erroneous; this can hardly fail to be the case in the first treatment of a subject. When naturalists have become familiar with the idea of sexual selection, it will, as I believe, be much more largely accepted; and it has already been fully and favourably received by several capable judges.

Down, Beckenham, Kent,

September 1874.

Table of Contents


Introduction.
Part I. The Descent or Origin of Man.
Chapter I. The Evidence of the Descent of Man from some Lower Form.
Chapter II. On the Manner of Development of Man from some Lower Form.
Chapter III. Comparison of the Mental Powers of Man and the Lower Animals.
Chapter IV. Comparison of the Mental Powers of Man and the Lower Animals—continued.
Chapter V. On the Development of the Intellectual and Moral Faculties during Primeval and Civilised Times.
Chapter VI. On the Affinities and Genealogy of Man.
Chapter VII. On the Races of Man.
Part II. Sexual Selection.
Chapter VIII. Principles of Sexual Selection.
Chapter IX. Secondary Sexual Characters in the Lower Classes of the Animal Kingdom.
Chapter X. Secondary Sexual Characters of Insects.
Chapter XI. Insects, continued.—Order Lepidoptera.
Chapter XII. Secondary Sexual Characters of Fishes, Amphibians, and Reptiles.
Chapter XIII. Secondary Sexual Characters of Birds.
Chapter XIV. Birds—continued.
Chapter XV. birds—continued.
Chapter XVI. Birds—concluded.
Chapter XVII. Secondary Sexual Characters of Mammals.
Chapter XVIII. Secondary Sexual Characters of Mammals—continued.
Part III. Sexual Selection in Relation to Man, and Conclusion.
Chapter XIX. Secondary Sexual Characters of Man.
Chapter XX. Secondary Sexual Characters of Man—continued.
Chapter XXI. General Summary and Conclusion.
Charles Darwin

The Descent of Man

Selection in Relation to Sex
e-artnow, 2020
Contact: info@e-artnow.org
EAN: 4064066386832

CHAPTER I.
THE EVIDENCE OF THE DESCENT OF MAN FROM SOME LOWER FORM.

Table of Contents

Nature of the evidence bearing on the origin of man—Homologous structures in man and the lower animals—Miscellaneous points of correspondence—Development—Rudimentary structures, muscles, sense-organs, hair, bones, reproductive organs, &c.—The bearing of these three great classes of facts on the origin of man.

He who wishes to decide whether man is the modified descendant of some pre-existing form, would probably first enquire whether man varies, however slightly, in bodily structure and in mental faculties; and if so, whether the variations are transmitted to his offspring in accordance with the laws which prevail with the lower animals. Again, are the variations the result, as far as our ignorance permits us to judge, of the same general causes, and are they governed by the same general laws, as in the case of other organisms; for instance, by correlation, the inherited effects of use and disuse, &c.? Is man subject to similar malconformations, the result of arrested development, of reduplication of parts, &c., and does he display in any of his anomalies reversion to some former and ancient type of structure? It might also naturally be enquired whether man, like so many other animals, has given rise to varieties and sub-races, differing but slightly from each other, or to races differing so much that they must be classed as doubtful species? How are such races distributed over the world; and how, when crossed, do they react on each other in the first and succeeding generations? And so with many other points.

The enquirer would next come to the important point, whether man tends to increase at so rapid a rate, as to lead to occasional severe struggles for existence; and consequently to beneficial variations, whether in body or mind, being preserved, and injurious ones eliminated. Do the races or species of men, whichever term may be applied, encroach on and replace one another, so that some finally become extinct? We shall see that all these questions, as indeed is obvious in respect to most of them, must be answered in the affirmative, in the same manner as with the lower animals. But the several considerations just referred to may be conveniently deferred for a time: and we will first see how far the bodily structure of man shows traces, more or less plain, of his descent from some lower form. In succeeding chapters the mental powers of man, in comparison with those of the lower animals, will be considered.


The Bodily Structure of Man.—It is notorious that man is constructed on the same general type or model as other mammals. All the bones in his skeleton can be compared with corresponding bones in a monkey, bat, or seal. So it is with his muscles, nerves, blood-vessels and internal viscera. The brain, the most important of all the organs, follows the same law, as shewn by Huxley and other anatomists. Bischoff,1 who is a hostile witness, admits that every chief fissure and fold in the brain of man has its analogy in that of the orang; but he adds that at no period of development do their brains perfectly agree; nor could perfect agreement be expected, for otherwise their mental powers would have been the same. Vulpian2 remarks: "Les différences réelles qui existent entre l'encéphale de l'homme et celui des singes supérieurs, sont bien minimes. Il ne faut pas se faire d'illusions à cet égard. L'homme est bien plus près des singes anthropomorphes par les caractères anatomiques de son cerveau que ceux-ci ne le sont non-seulement des autres mammifères, mais même de certains quadrumanes, des guenons et des macaques." But it would be superfluous here to give further details on the correspondence between man and the higher mammals in the structure of the brain and all other parts of the body.

It may, however, be worth while to specify a few points, not directly or obviously connected with structure, by which this correspondence or relationship is well shewn.

Man is liable to receive from the lower animals, and to communicate to them, certain diseases, as hydrophobia, variola, the glanders, syphilis, cholera, herpes, &c.;3 and this fact proves the close similarity4 of their tissues and blood, both in minute structure and composition, far more plainly than does their comparison under the best microscope, or by the aid of the best chemical analysis. Monkeys are liable to many of the same non-contagious diseases as we are; thus Rengger,5 who carefully observed for a long time the Cebus Azaræ in its native land, found it liable to catarrh, with the usual symptoms, and which, when often recurrent, led to consumption. These monkeys suffered also from apoplexy, inflammation of the bowels, and cataract in the eye. The younger ones when shedding their milk-teeth often died from fever. Medicines produced the same effect on them as on us. Many kinds of monkeys have a strong taste for tea, coffee, and spirituous liquors: they will also, as I have myself seen, smoke tobacco with pleasure.6 Brehm asserts that the natives of north-eastern Africa catch the wild baboons by exposing vessels with strong beer, by which they are made drunk. He has seen some of these animals, which he kept in confinement, in this state; and he gives a laughable account of their behaviour and strange grimaces. On the following morning they were very cross and dismal; they held their aching heads with both hands, and wore a most pitiable expression: when beer or wine was offered them, they turned away with disgust, but relished the juice of lemons.7 An American monkey, an Ateles, after getting drunk on brandy, would never touch it again, and thus was wiser than many men. These trifling facts prove how similar the nerves of taste must be in monkeys and man, and how similarly their whole nervous system is affected.

Man is infested with internal parasites, sometimes causing fatal effects; and is plagued by external parasites, all of which belong to the same genera or families as those infesting other mammals, and in the case of scabies to the same species.8 Man is subject, like other mammals, birds, and even insects,9 to that mysterious law, which causes certain normal processes, such as gestation, as well as the maturation and duration of various diseases, to follow lunar periods. His wounds are repaired by the same process of healing; and the stumps left after the amputation of his limbs, especially during an early embryonic period, occasionally possess some power of regeneration, as in the lowest animals.10

The whole process of that most important function, the reproduction of the species, is strikingly the same in all mammals, from the first act of courtship by the male,11 to the birth and nurturing of the young. Monkeys are born in almost as helpless a condition as our own infants; and in certain genera the young differ fully as much in appearance from the adults, as do our children from their full-grown parents.12 It has been urged by some writers, as an important distinction, that with man the young arrive at maturity at a much later age than with any other animal: but if we look to the races of mankind which inhabit tropical countries the difference is not great, for the orang is believed not to be adult till the age of from ten to fifteen years.13 Man differs from woman in size, bodily strength, hairiness, &c., as well as in mind, in the same manner as do the two sexes of many mammals. So that the correspondence in general structure, in the minute structure of the tissues, in chemical composition and in constitution, between man and the higher animals, especially the anthropomorphous apes, is extremely close.


Embryonic Development.—Man is developed from an ovule, about the 125th of an inch in diameter, which differs in no respect from the ovules of other animals. The embryo itself at a very early period can hardly be distinguished from that of other members of the vertebrate kingdom. At this period the arteries run in arch-like branches, as if to carry the blood to branchiæ which are not present in the higher vertebrata, though the slits on the sides of the neck still remain (f, g, fig. 1), marking their former position. At a somewhat later period, when the extremities are developed, "the feet of lizards and mammals," as the illustrious Von Baer remarks, "the wings and feet of birds, no less than the hands and feet of man, all arise from the same fundamental form." It is, says Prof. Huxley,14 "quite in the later stages of development that the young human being presents marked differences from the young ape, while the latter departs as much from the dog in its developments, as the man does. Startling as this last assertion may appear to be, it is demonstrably true."

As some of my readers may never have seen a drawing of an embryo, I have given one of man and another of a dog, at about the same early stage of development, carefully copied from two works of undoubted accuracy.15 After the foregoing statements made by such high authorities, it would be superfluous on my part to give a number of borrowed details, shewing that the embryo of man closely resembles that of other mammals. It may, however, be added, that the human embryo likewise resembles certain low forms when adult in various points of structure. For instance, the heart at first exists as a simple pulsating vessel; the excreta are voided through a cloacal passage; and the os coccyx projects like a true tail "extending considerably beyond the rudimentary legs."16 In the embryos of all air-breathing vertebrates, certain glands, called the corpora Wolffiana, correspond with, and act like the kidneys of mature fishes.17 Even at a later embryonic period, some striking resemblances between man and the lower animals may be observed. Bischoff says that the convolutions of the brain in a human fœtus at the end of the seventh month reach about the same stage of development as in a baboon when adult.18 The great toe, as Professor Owen remarks,19 "which forms the fulcrum when standing or walking, is perhaps the most characteristic peculiarity in the human structure;" but in an embryo, about an inch in length, Prof. Wyman20 found "that the great toe was shorter than the others; and, instead of being parallel to them, projected at an angle from the side of the foot, thus corresponding with the permanent condition of this part in the quadrumana." I will conclude with a quotation from Huxley,21 who, after asking, does man originate in a different way from a dog, bird, frog or fish? says, "the reply is not doubtful for a moment; without question, the mode of origin, and the early stages of the development of man, are identical with those of the animals immediately below him in the scale: without a doubt in these respects, he is far nearer to apes than the apes are to the dog."

Embryos

Fig. 1. Upper figure human embryo, from Ecker. Lower figure that of a dog, from Bischoff.

a. Fore-brain, cerebral hemispheres, &c.
b. Mid-brain, corpora quadrigemina.
c. Hind-brain, cerebellum, medulla oblongata.
d. Eye.
e. Ear.
f. First visceral arch.

g. Second visceral arch.
H. Vertebral columns and muscles process of development.

i. Anterior extremities
K. Posterior
L. Tail or os coccyx.


Rudiments.—This subject, though not intrinsically more important than the two last, will for several reasons be treated here more fully.22 Not one of the higher animals can be named which does not bear some part in a rudimentary condition; and man forms no exception to the rule. Rudimentary organs must be distinguished from those that are nascent; though in some cases the distinction is not easy. The former are either absolutely useless, such as the mammæ of male quadrupeds, or the incisor teeth of ruminants which never cut through the gums; or they are of such slight service to their present possessors, that we can hardly suppose that they were developed under the conditions which now exist. Organs in this latter state are not strictly rudimentary, but they are tending in this direction. Nascent organs, on the other hand, though not fully developed, are of high service to their possessors, and are capable of further development. Rudimentary organs are eminently variable; and this is partly intelligible, as they are useless, or nearly useless, and consequently are no longer subjected to natural selection. They often become wholly suppressed. When this occurs, they are nevertheless liable to occasional reappearance through reversion—a circumstance well worthy of attention.

The chief agents in causing organs to become rudimentary seem to have been disuse at that period of life when the organ is chiefly used (and this is generally during maturity), and also inheritance at a corresponding period of life. The term "disuse" does not relate merely to the lessened action of muscles, but includes a diminished flow of blood to a part or organ, from being subjected to fewer alternations of pressure, or from becoming in any way less habitually active. Rudiments, however, may occur in one sex of those parts which are normally present in the other sex; and such rudiments, as we shall hereafter see, have often originated in a way distinct from those here referred to. In some cases, organs have been reduced by means of natural selection, from having become injurious to the species under changed habits of life. The process of reduction is probably often aided through the two principles of compensation and economy of growth; but the later stages of reduction, after disuse has done all that can fairly be attributed to it, and when the saving to be effected by the economy of growth would be very small,23 are difficult to understand. The final and complete suppression of a part, already useless and much reduced in size, in which case neither compensation or economy can come into play, is perhaps intelligible by the aid of the hypothesis of pangenesis. But as the whole subject of rudimentary organs has been discussed and illustrated in my former works,24 I need here say no more on this head.

Rudiments of various muscles have been observed in many parts of the human body;25 and not a few muscles, which are regularly present in some of the lower animals can occasionally be detected in man in a greatly reduced condition. Every one must have noticed the power which many animals, especially horses, possess of moving or twitching their skin; and this is effected by the panniculus carnosus. Remnants of this muscle in an efficient state are found in various parts of our bodies; for instance, the muscle on the forehead, by which the eyebrows are raised. The platysma myoides, which is well developed on the neck, belongs to this system. Prof. Turner, of Edinburgh, has occasionally detected, as he informs me, muscular fasciculi in five different situations, namely in the axillæ, near the scapulæ, &c., all of which must be referred to the system of the panniculus. He has also shewn26 that the musculus sternalis or sternalis brutorum, which is not an extension of the rectus abdominalis, but is closely allied to the panniculus, occurred in the proportion of about three per cent. in upward of 600 bodies: he adds, that this muscle affords "an excellent illustration of the statement that occasional and rudimentary structures are especially liable to variation in arrangement."

Some few persons have the power of contracting the superficial muscles on their scalps; and these muscles are in a variable and partially rudimentary condition. M. A. de Candolle has communicated to me a curious instance of the long-continued persistence or inheritance of this power, as well as of its unusual development. He knows a family, in which one member, the present head of the family, could, when a youth, pitch several heavy books from his head by the movement of the scalp alone; and he won wagers by performing this feat. His father, uncle, grandfather, and his three children possess the same power to the same unusual degree. This family became divided eight generations ago into two branches; so that the head of the above-mentioned branch is cousin in the seventh degree to the head of the other branch. This distant cousin resides in another part of France; and on being asked whether he possessed the same faculty, immediately exhibited his power. This case offers a good illustration how persistent may be the transmission of an absolutely useless faculty, probably derived from our remote semi-human progenitors; since many monkeys have, and frequently use the power, of largely moving their scalps up and down.27

The extrinsic muscles which serve to move the external ear, and the intrinsic muscles which move the different parts, are in a rudimentary condition in man, and they all belong to the system of the panniculus; they are also variable in development, or at least in function. I have seen one man who could draw the whole ear forwards; other men can draw it upwards; another who could draw it backwards;28 and from what one of these persons told me, it is probable that most of us, by often touching our ears, and thus directing our attention towards them, could recover some power of movement by repeated trials. The power of erecting and directing the shell of the ears to the various points of the compass, is no doubt of the highest service to many animals, as they thus perceive the direction of danger; but I have never heard, on sufficient evidence, of a man who possessed this power, the one which might be of use to him. The whole external shell may be considered a rudiment, together with the various folds and prominences (helix and anti-helix, tragus and anti-tragus, &c.) which in the lower animals strengthen and support the ear when erect, without adding much to its weight. Some authors, however, suppose that the cartilage of the shell serves to transmit vibrations to the acoustic nerve; but Mr. Toynbee,29 after collecting all the known evidence on this head, concludes that the external shell is of no distinct use. The ears of the chimpanzee and orang are curiously like those of man, and the proper muscles are likewise but very slightly developed.30 I am also assured by the keepers in the Zoological Gardens that these animals never move or erect their ears; so that they are in an equally rudimentary condition with those of man, as far as function is concerned. Why these animals, as well as the progenitors of man, should have lost the power of erecting their ears, we cannot say. It may be, though I am not satified with this view, that owing to their arboreal habits and great strength they were but little exposed to danger, and so during a lengthened period moved their ears but little, and thus gradually lost the power of moving them. This would be a parallel case with that of those large and heavy birds, which, from inhabiting oceanic islands, have not been exposed to the attacks of beasts of prey, and have consequently lost the power of using their wings for flight. The inability to move the ears in man and several apes is, however, partly compensated by the freedom with which they can move the head in a horizontal plane, so as to catch sounds from all directions. It has been asserted that the ear of man alone possesses a lobule; but "a rudiment of it is found in the gorilla";31 and, as I hear from Prof. Preyer, it is not rarely absent in the negro. The celebrated sculptor, Mr. Woolner, informs me of one little peculiarity in the external ear, which he has often observed both in men and women, and of which he perceived the full significance. His attention was first called to the subject whilst at work on his figure of Puck, to which he had given pointed ears. He was thus led to examine the ears of various monkeys, and subsequently more carefully those of man. The peculiarity consists in a little blunt point, projecting from the inwardly folded margin, or helix. When present, it is developed at birth, and according to Prof. Ludwig Meyer, more frequently in man than in woman. Mr. Woolner made an exact model of one such case, and sent me the accompanying drawing (Fig. 2.)

Human ear

Fig 2. Human Ear, modelled and drawn by Mr. Woolner.
a. The projecting point.

These points not only project inwards towards the centre of the ear, but often a little outwards from its plane, so as to be visible when the head is viewed from directly in front or behind. They are variable in size, and somewhat in position, standing either a little higher or lower; and they sometimes occur on one ear and not on the other. They are not confined to mankind, for I observed a case in one of the spider-monkeys (Ateles beelzebuth) in our Zoological Gardens; and Dr. E. Ray Lankester informs me of another case in a chimpanzee in the gardens at Hamburg. The helix obviously consists of the extreme margin of the ear folded inwards; and this folding appears to be in some manner connected with the whole external ear being permanently pressed backwards. In many monkeys, which do not stand high in the order, as baboons and some species of macacus,32 the upper portion of the ear is slightly pointed, and the margin is not at all folded inwards; but if the margin were to be thus folded, a slight point would necessarily project inwards towards the centre, and probably a little outwards from the plane of the ear; and this I believe to be their origin in many cases. On the other hand, Prof. L. Meyer, in an able paper recently published,33 maintains that the whole case is one of mere variability; and that the projections are not real ones, but are due to the internal cartilage on each side of the points not having been fully developed. I am quite ready to admit that this is the correct explanation in many instances, as in those figured by Prof. Meyer, in which there are several minute points, or the whole margin is sinuous. I have myself seen, through the kindness of Dr. L. Down, the ear of a microcephalus idiot, on which there is a projection on the outside of the helix, and not on the inward folded edge, so that this point can have no relation to a former apex of the ear. Nevertheless in some cases, my original view, that the points are vestiges of the tips of formerly erect and pointed ears, still seems to me probable. I think so from the frequency of their occurrence, and from the general correspondence in position with that of the tip of a pointed ear. In one case, of which a photograph has been sent me, the projection is so large, that supposing, in accordance with Prof. Meyer's view, the ear to be made perfect by the equal development of the cartilage throughout the whole extent of the margin, it would have covered fully one-third of the whole ear. Two cases have been communicated to me, one in North America, and the other in England, in which the upper margin is not at all folded inwards, but is pointed, so that it closely resembles the pointed ear of an ordinary quadruped in outline. In one of these cases, which was that of a young child, the father compared the ear with the drawing which I have given34 of the ear of a monkey, the Cynopithecus niger, and says that their outlines are closely similar. If, in these two cases, the margin had been folded inwards in the normal manner, an inward projection must have been formed. I may add that in two other cases the outline still remains somewhat pointed, although the margin of the upper part of the ear is normally folded inwards—in one of them, however, very narrowly. The following woodcut (No. 3) is an accurate copy of a photograph of the fœtus of an orang (kindly sent me by Dr. Nitsche), in which it may be seen how different the pointed outline of the ear is at this period from its adult condition, when it bears a close general resemblance to that of man. It is evident that the folding over of the tip of such an ear, unless it changed greatly during its further development, would give rise to a point projecting inwards. On the whole, it still seems to me probable that the points in question are in some cases, both in man and apes, vestiges of a former condition.

Fœtus of an Orang

Fig. 3. Fœtus of an Orang. Exact copy of a photograph, shewing the form of the ear at this early age.

The nictitating membrane, or third eyelid, with its accessory muscles and other structures, is especially well developed in birds, and is of much functional importance to them, as it can be rapidly drawn across the whole eye-ball. It is found in some reptiles and amphibians, and in certain fishes, as in sharks. It is fairly well developed in the two lower divisions of the mammalian series, namely, in the monotremata and marsupials, and in some few of the higher mammals, as in the walrus. But in man, the quadrumana, and most other mammals, it exists, as is admitted by all anatomists, as a mere rudiment, called the semilunar fold.35

The sense of smell is of the highest importance to the greater number of mammals—to some, as the ruminants, in warning them of danger; to others, as the carnivora, in finding their prey; to others, again, as the wild boar, for both purposes combined. But the sense of smell is of extremely slight service, if any, even to the dark coloured races of men, in whom it is much more highly developed than in the white and civilised races.36 Nevertheless it does not warn them of danger, nor guide them to their food; nor does it prevent the Esquimaux from sleeping in the most fetid atmosphere, nor many savages from eating half-putrid meat. In Europeans the power differs greatly in different individuals, as I am assured by an eminent naturalist who possesses this sense highly developed, and who has attended to the subject. Those who believe in the principle of gradual evolution, will not readily admit that the sense of smell in its present state was originally acquired by man, as he now exists. He inherits the power in an enfeebled and so far rudimentary condition, from some early progenitor, to whom it was highly serviceable, and by whom it was continually used. In those animals which have this sense highly developed, such as dogs and horses, the recollection of persons and of places is strongly associated with their odour; and we can thus perhaps understand how it is, as Dr. Maudsley has truly remarked,37 that the sense of smell in man "is singularly effective in recalling vividly the ideas and images of forgotten scenes and places."

Man differs conspicuously from all the other primates in being almost naked. But a few short straggling hairs are found over the greater part of the body in the man, and fine down on that of a woman. The different races differ much in hairiness; and in the individuals of the same race the hairs are highly variable, not only in abundance, but likewise in position: thus in some Europeans the shoulders are quite naked, whilst in others they bear thick tufts of hair.3839