Details

Smart Grid and Enabling Technologies


Smart Grid and Enabling Technologies


IEEE Press 1. Aufl.

von: Shady S. Refaat, Omar Ellabban, Sertac Bayhan, Haitham Abu-Rub, Frede Blaabjerg, Miroslav M. Begovic

104,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 27.07.2021
ISBN/EAN: 9781119422457
Sprache: englisch
Anzahl Seiten: 512

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>SMART GRID</b> AND <b>ENABLING TECHNOLOGIES</b> <p><b>Discover foundational topics in smart grid technology as well as an exploration of the current and future state of the industry</b> <p>As the relationship between fossil fuel use and climate change becomes ever clearer, the search is on for reliable, renewable and less harmful sources of energy. Sometimes called the “electronet” or the “energy Internet,” smart grids promise to integrate renewable energy, information, and communication technologies with the existing electrical grid and deliver electricity more efficiently and reliably. <p><i>Smart Grid and Enabling Technologies</i> delivers a complete vision of smart grid technology and applications, including foundational and fundamental technologies, the technology that enables smart grids, the current state of the industry, and future trends in smart energy. The book offers readers thorough discussions of modern smart grid technology, including advanced metering infrastructure, net zero energy buildings, and communication, data management, and networks in smart grids. <p>The accomplished authors also discuss critical challenges and barriers facing the smart grid industry as well as trends likely to be of importance in its future development. Readers will also benefit from the inclusion of: <ul><li>A thorough introduction to smart grid architecture, including traditional grids, the fundamentals of electric power, definitions and classifications of smart grids, and the components of smart grid technology</li><li>An exploration of the opportunities and challenges posed by renewable energy integration</li><li>Practical discussions of power electronics in the smart grid, including power electronics converters for distributed generation, flexible alternating current transmission systems, and high voltage direct current transmission systems</li><li>An analysis of distributed generation</li></ul> <p>Perfect for scientists, researchers, engineers, graduate students, and senior undergraduate students studying and working with electrical power systems and communication systems. <i>Smart Grid and Enabling Technologies</i> will also earn a place in the libraries of economists, government planners and regulators, policy makers, and energy stakeholders working in the smart grid field.
<p>About the Authors</p> <p>Acknowledgements</p> <p>Preface</p> <p>List of Abbreviations</p> <ol> <li><b><i>1.      </i></b><b><i>Smart Grid Architectural Overview</i></b></li> </ol> <p>1.1   Introduction</p> <p>1.2   Fundamentals of Electric Power system</p> <p>1.2.1        Electrical Power Generation</p> <p>1.2.2        Electric Power Transmission</p> <p>1.2.3        Electric Power Distribution</p> <p>1.3   More limitations of the traditional power grid</p> <p>1.3.1        Lack of circuit capacity and aging assets</p> <p>1.3.2        Operation Constrains</p> <p>1.3.3        Security of Supply</p> <p>1.3.4        Respond to national initiatives</p> <p>1.4   Smart Grid Definition</p> <p>1.5   Smart Grid Characteristics</p> <p>1.5.1        Achieve flexibility in the network topology</p> <p>1.5.2        Improved efficiency</p> <p>1.5.3        Transportation Electrification</p> <p>1.5.4        Demand response support</p> <p>1.5.5        Improvement in Reliability and Power Quality</p> <p>1.5.6        Market-enabling</p> <p>1.6   Moving towards Future grid</p> <p>1.6.1        Electrification</p> <p>1.6.2        Decentralization</p> <p>1.6.3        Digitalization</p> <p>1.7   The transformation from the traditional grid to smart grid</p> <p>1.8   Smart Grid Enabling Technologies</p> <p>1.9   Smart Grid Architecture</p> <p>1.9.1        Distributed Generation</p> <p>1.9.2        Energy Storage</p> <p>1.9.3        Demand Response</p> <p>1.9.4        Integrated communications</p> <p>1.9.4.1   Communication Networks</p> <p>1.9.4.2   Power Line Communication (PLC)</p> <p>1.9.4.3   Standardization</p> <p>1.9.5        Customer Engagement</p> <p>1.9.6        Sensors and PMU Units</p> <p>1.9.7        Smart Meters</p> <p>1.10Classification of Smart Grid Control</p> <p>1.11Smart Grid Challenges</p> <p>1.11.1     Accessibility and acceptability</p> <p>1.11.2     Accountability</p> <p>1.11.3     Controllability</p> <p>1.11.4     Interoperability</p> <p>1.11.5     Interchangeability</p> <p>1.11.6     Maintainability</p> <p>1.11.7     Optimality</p> <p>1.11.8     Security</p> <p>1.11.9     Upgradability</p> <p>1.12Organization of the Book</p> <ol> <li><b><i>2.      </i></b><b><i>Renewable Energy: Overview, Opportunities and Challenges</i></b></li> </ol> <p>2.1   Introduction</p> <p>2.2   Description of Renewable Energy Sources</p> <p>2.2.1        Bioenergy Energy</p> <p>2.2.2        Geothermal Energy</p> <p>2.2.3        Hydropower Energy</p> <p>2.2.4        Marine Energy</p> <p>2.2.5        Solar Energy</p> <p>2.2.5.1   Photovoltaic</p> <p>2.2.5.2   Concentrated Solar Power</p> <p>2.2.5.3   Solar Thermal Heating and Cooling</p> <p>2.2.6        Wind Energy</p> <p>2.3   Renewable Energy: Growth, Investment, Benefits and Deployment</p> <p>2.4   Smart Grid Enable Renewables</p> <p>2.5   Conclusion</p> <p>2.6   References</p> <ol> <li><b><i>3.      </i></b><b><i><a title="8: Distributed Generation and Transmission" href="http://proquest.safaribooksonline.com.ezproxy.library.tamu.edu/book/electrical-engineering/power-systems/9781118820247/part-two-communication-and-networking-the-enabler/9781118820247_epub_c_08_htm"> Power Electronics Converters for Distributed Generation </a></i></b></li> </ol> <p>3.1   An overview of distributed generation systems with power electronics</p> <p>3.1.1        Photovoltaic technology</p> <p>3.1.2        Wind power technology</p> <p>3.1.3        Energy storage systems</p> <p>3.2   Power electronics for grid-connected AC smart grid</p> <p>3.2.1        Voltage-source converters</p> <p>3.2.2        Multilevel power converters</p> <p>3.3   Power electronics enabled autonomous AC power systems</p> <p>3.3.1        Converter level controls in microgrids</p> <p>3.3.2        System level coordination control</p> <p>3.4   Power electronics enabled autonomous DC power systems</p> <p>3.4.1        Converter level controls</p> <p>3.4.2        System level coordination control</p> <p>3.5   Conclusion</p> <p>3.6   References</p> <ol> <li><b><i>4.      </i></b><b><i>Energy Storage Systems as an Enabling Technology for the Smart Grid</i></b></li> </ol> <p>4.1   Introduction</p> <p>4.2   Structure of Energy Storage System</p> <p>4.3   Energy Storage Systems Classification and Description</p> <p>4.4   Current State of Energy Storage Technologies</p> <p>4.5   Techno-Economic Characteristics of Energy Storage Systems</p> <p>4.6   Selection of Energy Storage Technology for Certain Application</p> <p>4.7   Energy Storage Applications</p> <p>4.8   Barriers to the Deployment of Energy Storage</p> <p>4.9   Energy Storage Roadmap</p> <p>4.10Conclusion</p> <p>4.11References</p> <ol> <li><b><i>5.      </i></b><b><i>Microgrids: State of the Art and Future Challenges</i></b></li> </ol> <p>5.1   Introduction</p> <p>5.2   DC Versus AC Microgrid</p> <p>5.2.1        LVAC and LVDC Networks</p> <p>5.2.2        AC Microgrid</p> <p>5.2.3        DC Microgrid</p> <p>5.3   Microgrid Design</p> <p>5.3.1        Methodology for the Microgrid Design</p> <p>5.3.2        Design Considerations</p> <p>5.4   Microgrid Control</p> <p>5.4.1        Primary Control Level</p> <p>5.4.2        Secondary Control Level</p> <p>5.4.3        Tertiary Control Level</p> <p>5.5   Microgrid Economics</p> <p>5.5.1        Capacity Planning</p> <p>5.5.2        Operations Modeling</p> <p>5.5.3        Financial Modeling</p> <p>5.5.4        Barriers to Realizing Microgrids</p> <p>5.6   Operation of Multi-Microgrids</p> <p>5.7   Microgrid Benefits</p> <p>5.7.1        Economic Benefits</p> <p>5.7.2        Technical Benefits</p> <p>5.7.3        Environmental Benefits</p> <p>5.8   Challenges</p> <p>5.9   Conclusion</p> <p>5.10References</p> <ol> <li><b><i>6.      </i></b><b><i>Smart Transportation</i></b></li> </ol> <p>6.1   Introduction</p> <p>6.2   Electric Vehicle Topologies</p> <p>6.2.1        Battery Electric Vehicles</p> <p>6.2.2        Plug-in Hybrid Electric Vehicles</p> <p>6.2.3        Hybrid Electric Vehicles</p> <p>6.2.4        Fuel-Cell Electric Vehicles</p> <p>6.2.5        Fuel-Cell Electric Vehicles</p> <p>6.3   Powertrain Architectures</p> <p>6.3.1        Series HEV Architecture</p> <p>6.3.2        Parallel HEV Architecture</p> <p>6.3.3        Series-Parallel HEV Architecture</p> <p>6.4   Battery Technology</p> <p>6.4.1        Battery Parameters</p> <p>6.4.2        Common Battery Chemistries</p> <p>6.5   Battery Charger Technology</p> <p>6.5.1        Charging Rates and Options</p> <p>6.5.2        Wireless Charging</p> <p>6.6   Vehicle to Grid (V2G) Concept</p> <p>6.6.1        Unidirectional V2G</p> <p>6.6.2        Bidirectional V2G</p> <p>6.7   Barriers to EV Adoption</p> <p>6.7.1        Technological Problems</p> <p>6.7.2        Social Problems</p> <p>6.7.3        Economic Problems</p> <p>6.8   Trends and Future Developments</p> <p>6.9   Conclusion</p> <p>6.10References</p> <ol> <li><b><i>7.      </i></b><b><i>Net Zero Energy Buildings</i></b></li> </ol> <p>7.1   Introduction</p> <p>7.2   Net Zero Energy Building Definition</p> <p>7.3   Net Zero Energy Building Design</p> <p>7.4   Net Zero Energy Building: Modelling, Controlling and Optimization</p> <p>7.5   Net Zero Energy Community</p> <p>7.6   Net Zero Energy Building: Trends, Benefits, Barriers and Efficiency Investments</p> <p>7.7   Conclusion</p> <p>7.8   Reference</p> <ol> <li><b><i>8.      </i></b><b><i>Smart Grid Communication Infrastructures </i></b></li> </ol> <p>8.1   Introduction</p> <p>8.2   Advanced Metering Infrastructure</p> <p>8.3   Smart Grid Communications</p> <p>8.3.1        Challenges of SG Communications</p> <p>8.3.2        Requirements of SG Communications</p> <p>8.3.3        Architecture of SG Communication</p> <p>8.3.4        SG Communication technologies</p> <p>8.4   Conclusion</p> <p>8.5   References</p> <ol> <li><b><i>9.      </i></b><b><i>Smart Grid Information Security</i></b></li> </ol> <p>9.1   Introduction</p> <p>9.2   Smart Grid Layers </p> <p>9.2.1        The power system layer</p> <p>9.2.2        The information layer</p> <p>9.2.3        The communication layer</p> <p>9.3   Attacking Smart Grid Network Communication</p> <p>9.3.1        Physical Layer Attacks.</p> <p>9.3.2        Data Injection and Replay Attacks.</p> <p>9.3.3        Network-Based Attacks</p> <p>9.4    Physical Layer Attacks.</p> <p>9.4.1        Resilient Industrial Control Systems</p> <p>9.4.2        Areas of Resilience</p> <p>9.4.2.1   Human systems</p> <p>9.4.2.2   Cyber security</p> <p>9.4.2.3   Complex networks and networked control systems</p> <p>9.5   Cyber Security Challenges in Smart Grid</p> <p>9.6   Adopting a Smart Grid Security Architecture Methodology</p> <p>9.6.1        Smart Grid Security Objectives.</p> <p>9.6.2        Cyber Security Requirements</p> <p>9.6.2.1   Attack detection and resilience operations.</p> <p>9.6.2.2   Identification, and access control.</p> <p>9.6.2.3   Secure and efficient communication protocols.</p> <p>9.7   Validating Your Smart Grid</p> <p>9.8   Threats and Impacts: Consumers and Utility Companies</p> <p>9.9   Governmental Effort to Secure Smart Grids</p> <p>9.10Conclusion</p> <p>9.11References</p> <p><b><i>10.  </i></b><b><i>Data Management in Smart Grid</i></b></p> <p>10.1Introduction</p> <p>10.2 Sources of Data in Smart Grid</p> <p>10.3Big Data Era</p> <p>10.4Tools to Manage Big Data</p> <p>10.4.1     Apache Hadoop</p> <p>10.4.2     Not Only SQL (NoSQL)</p> <p>10.4.3     Microsoft HDInsight</p> <p>10.4.4     Hadoop MapReduce</p> <p>10.4.5     Cassandra</p> <p>10.4.6     Storm</p> <p>10.4.7     Hive</p> <p>10.4.8     Plotly</p> <p>10.4.9     Talend</p> <p>10.4.10  Bokeh</p> <p>10.4.11  Cloudera</p> <p>10.5Big Data Integration, Frameworks, and Data Bases</p> <p>10.6Building the Foundation for Big Data Processing</p> <p>10.6.1     Big Data Management Platform</p> <p>10.6.1.1  Acquisition and Recording.</p> <p>10.6.1.2  Extraction, Cleaning, and Prediction.</p> <p>10.6.1.3  Big Data Integration</p> <p>10.6.2     Big Data Analytics Platform</p> <p>10.6.2.1  Modeling and Analysis</p> <p>10.6.2.2  Interpretation</p> <p>10.7Transforming Big Data for High Value Action</p> <p>10.7.1     Decide what to produce</p> <p>10.7.2     Source the raw materials</p> <p>10.7.3     Produce insights with speed</p> <p>10.7.4     Deliver the goods and act</p> <p>10.8Privacy Information Impacts on Smart Grid.</p> <p>10.9Meter Data Management for Smart Grid</p> <p>10.10                  Summary</p> <p>10.11                  References</p> <p><b><i>11.  </i></b><b><i>Demand-Management</i></b></p> <p>11.1 Introduction</p> <p>11.2Demand Response</p> <p>11.3Demand Response Programs</p> <p>11.3.1     Load-Response Programs</p> <p>11.3.2     Price Response Programs</p> <p>11.4 End User Engagement</p> <p>11.5Challenges of Demand Response within Smart Grid</p> <p>11.6Demand-Side Management (DSM)</p> <p>11.7Demand Side Management Techniques</p> <p>11.8Demand-Side Management Evaluation</p> <p>11.9Demand Response Applications</p> <p>11.10                  Summary</p> <p>11.11                  References</p> <p><b><i>12.  </i></b><b><i>Business Models for the Smart Grid</i></b></p> <p>12.1The Business Model Concept</p> <p>12.2The Electricity Value Chain</p> <p>12.3Electricity Markets</p> <p>12.4Review of the Previous Proposed Smart Grid Business Models</p> <p>12.4.1     Timing-Based Business Model</p> <p>12.4.2     Business Intelligence Model</p> <p>12.4.3     Business Models for Renewable Energy</p> <p>12.4.4     Service-oriented Business Models</p> <p>12.4.5     Prosumer Business Models</p> <p>12.4.6     Integrated Energy Services Business Model</p> <p>12.4.7     Future Business Model Levers</p> <p>12.5Blockchain Based Electricity Market</p> <p>12.6Conclusion</p> <p>12.7References</p> <p><b><i>13.  </i></b><b><i>Smart Grid Customers’ Acceptance and Engagement</i></b></p> <p>13.1Introduction</p> <p>13.2Customer as one of the Smart Grid Domains</p> <p>13.3Understanding the Smart Grid Customer </p> <p>13.4Smart Grid Customer Acceptance</p> <p>13.5Customer Engagement in the Smart Grid</p> <p>13.6Challenges for Consumer Engagement, Policy Recommendation and Research Agenda</p> <p>13.7Conclusion</p> <p><b><i>14.  </i></b><b><i>Cloud Computing for Smart Grid</i></b></p> <p>14.1 Introduction</p> <p>14.2 Overview of Cloud Computing for Smart Grid</p> <p>14.3 Cloud Computing</p> <p>14.4 Cloud computing Architecture</p> <p>14.4.1     1Infrastructure as a Service (IaaS)</p> <p>14.4.2     2Platform-as-a-Service (PaaS)</p> <p>14.4.3     Software-as-a-Service (SaaS)</p> <p>14.5Cloud Computing Applications</p> <p>14.6Cloud Applications for Smart Grid performance</p> <p>14.7Cloud Applications for Energy Management</p> <p>14.8Cloud computing-based power dispatching in smart grid</p> <p>14.9Cloud computing characteristics in improving SG</p> <p>14.10                  Opportunities and challenges of Cloud Computing in Smart grid</p> <p>14.11                  Multiple perspectives for cloud implementation</p> <p>14.12                  Conclusion</p> <p><b><i>15.  </i></b><b><i>On the Pivotal Role of Artificial Intelligence Towards the Evolution of Smart Grids: Advanced Methodologies and Applications</i></b></p> <p>15.1Introduction</p> <p>15.2Century-old grid and SG transition</p> <p>15.3AI techniques in smart grid</p> <p>15.3.1     AI commonly deployed techniques</p> <p>15.3.1.1  Artificial Neural Networks-based</p> <p>15.3.1.2  Fuzzy logic-based</p> <p>15.3.1.3  Ensemble methods-based</p> <p>15.3.1.4  Genetic algorithms-based</p> <p>15.3.1.5  Expert Systems-based</p> <p>15.3.1.6  Support Vector Machines-based</p> <p>15.3.1.7  Hybrid models-based</p> <p>15.3.2     Machine Learning Model Evaluation</p> <p>15.4Major applications of AI in SG</p> <p>15.4.1     Load forecasting</p> <p>15.4.2     Alternative energy forecasting</p> <p>15.4.3     Photovoltaic energy</p> <p>15.4.4     Wind power</p> <p>15.4.5     MPPT-based AI</p> <p>15.4.6     Fault diagnosis-based AI</p> <p>15.4.7     AI and Cyber smart grid security</p> <p>15.4.8     Electricity price forecasting</p> <p>15.5Challenges and future scope</p> <p>15.6Conclusion</p> <p> </p> <p><b><i>16.  </i></b><b><i>Smart Grid Simulation Tools</i></b></p> <p>16.1Introduction</p> <p>16.2Simulation Approaches</p> <p>16.2.1     Multi-Domain Simulation</p> <p>16.2.2     Co-Simulation</p> <p>16.2.3     Real-Time Simulation and Hardware-in-the-Loop</p> <p>16.3Review of Smart Grid Planning and Analysis Tools</p> <p>16.3.1     PSCAD</p> <p>16.3.2     PowerWorld Simulator</p> <p>16.3.3     ETAP</p> <p>16.3.4     DIgSILENT PowerFactory</p> <p>16.3.5     OpenDSS</p> <p>16.3.6     GridLab-D</p> <p>16.3.7     Conclusions</p> <p><b><i>17.  </i></b><b><i>Smart Grid Standards and Interoperability</i></b></p> <p>17.1Introduction</p> <p>17.2Organizations for Smart Grid Standardization</p> <p>17.2.1     IEC Strategic Group on Smart Grid</p> <p>17.2.2     Technical Communities and their Subcommittees of IEEE Power and Energy Society (PES)</p> <p>17.2.3     National Institute of Standards and Technology</p> <p>17.2.4     National Standard of P.R.C. for Smart Grid</p> <p>17.3Smart Grid Policies for Standard Developments</p> <p>17.3.1     United States</p> <p>17.3.2     Germany</p> <p>17.3.3     Europe</p> <p>17.3.4     South Korea</p> <p>17.3.5     Australia</p> <p>17.3.6     Canada</p> <p>17.3.7     Japan</p> <p>17.3.8     China</p> <p>17.4Smart Grid Standards</p> <p>17.4.1     Revenue Metering Information Model</p> <p>17.4.2     Building Automation</p> <p>17.4.3     Substation Automation</p> <p>17.4.4     Powerline Networking</p> <p>17.4.5     Energy Management Systems</p> <p>17.4.6     Interoperability Center Communications</p> <p>17.4.7     Cyber Security</p> <p>17.4.8     Electric Vehicles</p> <p>17.5Conclusion</p> <p>17.6References</p> <p><b><i>18.  </i></b><b><i>Smart Grid Challenges and Barriers, Critical Success Factors and Future </i></b><b><i>Vision </i></b></p> <p>18.1Introduction</p> <p>18.2Structure of modern smart-grids</p> <p>18.3Concept of reliability in power systems</p> <p>18.4Smart-grid challenges and barriers</p> <p>18.4.1     Low inertia issues – Frequency support</p> <p>18.4.2     Moving towards full/more renewable energies</p> <p>18.4.3     Protection issues</p> <p>18.4.4     Control dynamic interactions.</p> <p>18.4.5     Reliability issues</p> <p>18.4.6     Marketing</p> <p>18.5New reliability paradigm in smart-grids</p> <p>18.5.1     Adequacy</p> <p>18.5.2     Security</p> <p>18.5.3     Static security</p> <p>18.5.4     Dynamic/transient security</p> <p>18.5.5     Cyber-security</p> <p>18.6Summary</p> <p>18.7References</p> <p>Index [not supplied to follow later</p>
<p><b>Shady S. Refaat</b> is an Associate Research Scientist at Texas A&M University at Qatar. His research interests include electrical machines, power systems, smart grid, energy management systems, reliability of power grid and electric machinery, fault detection, and condition monitoring in conjunction with fault management and development of fault tolerant systems.</p> <p><b>Omar Ellabban</b> is a Principal Power Electronics Engineer (Team Lead) at Compound Semiconductor Applications Catapult in Newport, UK. His research activities focus on Compound Semiconductor Applications, renewable energies integration, smart grid, power electronics converters design and control for various applications, and electric vehicles. <p><b>Sertac Bayhan</b> currently works at the Qatar Environment and Energy Research Institute, Qatar, as a Senior Scientist. Sertac received his M.Sc. and Ph.D. degrees in Electrical Engineering from Gazi University, Ankara, Turkey, in 2008 and 2012, respectively. <p><b>Haitham Abu-Rub</b> is Professor at Texas A&M University at Qatar, and is the Managing Director of the Smart Grid Center at the same university. His research interests include energy conversion systems, including electric drives, power electronic converters, renewable energy, and smart grid. <p><b>Frede Blaabjerg</b> is Professor of Power Electronics and Drives at Aalborg University in Denmark. His research interests include power electronics and its applications such as in wind turbines, PV systems, reliability, harmonics, and adjustable speed drives. <p><b>Miroslav M. Begovic</b> is Carolyn S. and Tommie E. Lohman ’59 Professor at Texas A&M University in the United States. He is Head of the Department of Electrical and Computer Engineering. His research interests include the monitoring, analysis, and control of power systems, as well as the development and applications of renewable and sustainable energy systems.
<p><b>Discover foundational topics in smart grid technology as well as an exploration of the current and future state of the industry</b></p> <p>As the relationship between fossil fuel use and climate change becomes ever clearer, the search is on for reliable, renewable and less harmful sources of energy. Sometimes called the “electronet” or the “energy Internet,” smart grids promise to integrate renewable energy, information, and communication technologies with the existing electrical grid and deliver electricity more efficiently and reliably. <p><i>Smart Grid and Enabling Technologies</i> delivers a complete vision of smart grid technology and applications, including foundational and fundamental technologies, the technology that enables smart grids, the current state of the industry, and future trends in smart energy. The book offers readers thorough discussions of modern smart grid technology, including advanced metering infrastructure, net zero energy buildings, and communication, data management, and networks in smart grids. <p>The accomplished authors also discuss critical challenges and barriers facing the smart grid industry as well as trends likely to be of importance in its future development. Readers will also benefit from the inclusion of: <ul><li>A thorough introduction to smart grid architecture, including traditional grids, the fundamentals of electric power, definitions and classifications of smart grids, and the components of smart grid technology</li><li>An exploration of the opportunities and challenges posed by renewable energy integration</li><li>Practical discussions of power electronics in the smart grid, including power electronics converters for distributed generation, flexible alternating current transmission systems, and high voltage direct current transmission systems</li><li>An analysis of distributed generation</li></ul> <p>Perfect for scientists, researchers, engineers, graduate students, and senior undergraduate students studying and working with electrical power systems and communication systems. <i>Smart Grid and Enabling Technologies</i> will also earn a place in the libraries of economists, government planners and regulators, policy makers, and energy stakeholders working in the smart grid field.

Diese Produkte könnten Sie auch interessieren:

Uncertainty in the Electric Power Industry
Uncertainty in the Electric Power Industry
von: Christoph Weber
PDF ebook
106,99 €
Interfacial Transport Phenomena
Interfacial Transport Phenomena
von: John C. Slattery, Leonard Sagis, Eun-Suok Oh
PDF ebook
213,99 €
Constructal Theory of Social Dynamics
Constructal Theory of Social Dynamics
von: Adrian Bejan, Gilbert W. Merkx
PDF ebook
213,99 €