Details

Surface Plasmon Enhanced, Coupled and Controlled Fluorescence


Surface Plasmon Enhanced, Coupled and Controlled Fluorescence


1. Aufl.

von: Chris D. Geddes

171,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 14.03.2017
ISBN/EAN: 9781119324829
Sprache: englisch
Anzahl Seiten: 336

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Explains the principles and current thinking behind plasmon enhanced Fluorescence<br /></b> <ul> <li>Describes the current developments in Surface Plasmon Enhanced, Coupled and Controlled Fluorescence</li> <li>Details methods used to understand solar energy conversion, detect and quantify DNA more quickly and accurately, and enhance the timeliness and accuracy of digital immunoassays</li> <li>Contains contributions by the world’s leading scientists in the area of fluorescence and plasmonics</li> <li>Describes detailed experimental procedures for developing both surfaces and nanoparticles for applications in metal-enhanced fluorescence</li> </ul>
<p>List of Contributors xi</p> <p>Preface xv</p> <p><b>1 Plasmonic?–Fluorescent and Magnetic?–Fluorescent Composite Nanoparticle as Multifunctional Cellular Probe 1<br /></b><i>Arindam Saha, SK Basiruddin, and Nikhil Ranjan Jana</i></p> <p>1.1 Introduction 1</p> <p>1.2 Synthesis Design of Composite Nanoparticle 2</p> <p>1.2.1 Method 1: Polyacrylate Coating?–Based Composite of Nanoparticle and Organic Dye 3</p> <p>1.2.2 Method 2: Polyacrylate Coating?–Based Composite of Two Different Nanoparticles 3</p> <p>1.2.3 Method 3: Ligand Exchange Approach?–Based Composite of Two Different Nanoparticles 4</p> <p>1.3 Property of Composite Nanoparticles 5</p> <p>1.3.1 Optical Property 5</p> <p>1.3.2 Fluorophore Lifetime Study 7</p> <p>1.4 Functionalization and Labeling Application of Composite Nanoparticle 8</p> <p>1.5 Conclusion 8</p> <p><b>2 Compatibility of Metal?–Induced Fluorescence Enhancement with Applications in Analytical </b><b>Chemistry and Biosensing 13<br /></b><i>Fang Xie, Wei Deng, and Ewa M. Goldys</i></p> <p>2.1 Introduction 13</p> <p>2.2 Homogeneous Protein Sensing MIFE Substrates 14</p> <p>2.2.1 Core–Shell Approach 14</p> <p>2.2.2 Homogeneous Large Au Nanoparticle Substrates 16</p> <p>2.2.3 Commercial Klarite™ Substrate 18</p> <p>2.3 Ag Fractal Structures 19</p> <p>2.3.1 Reasons for High Enhancement Factors in Nanowire Structures 19</p> <p>2.3.2 Ag Dendritic Structure—Homogeneous Silver Fractal 22</p> <p>2.4 MIFE with Membranes for Protein Dot Blots 25</p> <p>2.5 MIFE with Flow Cytometry Beads and Single Particle Imaging 30</p> <p><b>3 Plasmonic Enhancement of Molecule?–Doped Core–Shell and Nanoshell on Molecular Fluorescence 37<br /></b><i>Jiunn?–Woei Liaw, Chuan?–Li Liu, Chong?–Yu Jiang, and Mao?–Kuen Kuo</i></p> <p>3.1 Introduction 37</p> <p>3.2 Theory 38</p> <p>3.2.1 Plane Wave Interacting with an Multilayered Sphere 39</p> <p>3.2.2 Excited Dipole Interacting with a Multilayered Sphere 40</p> <p>3.2.3 EF on Fluorescence 40</p> <p>3.3 Numerical Results and Discussion 41</p> <p>3.3.1 Core–Shell 41</p> <p>3.3.2 Nanoshelled Nanocavity 50</p> <p>3.3.3 NS@SiO2 53</p> <p>3.4 Conclusion 66</p> <p><b>4 Controlling Metal?–Enhanced Fluorescence Using Bimetallic Nanoparticles 73<br /></b><i>Debosruti Dutta, Sanchari Chowdhury, Chi Ta Yang, Venkat R. Bhethanabotla, and Babu Joseph</i></p> <p>4.1 Introduction 73</p> <p>4.2 Experimental Methods 74</p> <p>4.2.1 Synthesis 74</p> <p>4.2.2 Particle Characterization 75</p> <p>4.2.3 Fluorescence Spectroscopy 76</p> <p>4.3 Theoretical Modeling 79</p> <p>4.3.1 Modeling SPR Using Mie Theory 79</p> <p>4.3.2 Modeling of Metal?–Enhanced Fluorescence Modified Gersten–Nitzan Model 81</p> <p>4.3.3 Modeling MEF Using Finite?–Difference Time?–Domain (FDTD) Calculations 85</p> <p>4.4 Conclusion and Future Directions 87</p> <p><b>5 Roles of Surface Plasmon Polaritons in Fluorescence Enhancement 91<br /></b><i>K. F. Chan, K. C. Hui, J. Li, C. H. Fok, and H. C. Ong</i></p> <p>5.1 Introduction 91</p> <p>5.1.1 Surface Plasmon?–Mediated Emission 91</p> <p>5.1.2 Excitation of Propagating and Localized Surface Plasmon Polaritons in Periodic Metallic Arrays 93</p> <p>5.1.3 Surface Plasmon?–Mediated Emission from Periodic Arrays 95</p> <p>5.2 Experimental 95</p> <p>5.2.1 Sample Preparation 95</p> <p>5.2.2 Optical Characterizations 96</p> <p>5.3 Result and Discussion 97</p> <p>5.3.1 The Decay Lifetimes of Metallic Hole Arrays 97</p> <p>5.3.2 Dependence of Decay Lifetime on Hole Size 98</p> <p>5.3.3 Comparison between Dispersion Relation and PL Mapping 100</p> <p>5.3.4 Comparison of the Coupling Rate ΓB of Different SPP Modes 102</p> <p>5.3.5 Photoluminescence Dependence on Hole Size 104</p> <p>5.3.6 Dependence of Fluorescence Decay Lifetime on Hole Size 105</p> <p>5.4 Conclusions 107</p> <p><b>6 Fluorescence Excitation, Decay, and Energy Transfer in the Vicinity of Thin Dielectric/Metal/Dielectric Layers near Their Surface Plasmon Polariton Cutoff Frequency 111<br /></b><i>Kareem Elsayad and Katrin G. Heinze</i></p> <p>6.1 Introduction 111</p> <p>6.2 Background 111</p> <p>6.3 Theory 112</p> <p>6.4 Summary 120</p> <p><b>7 Metal?–Enhanced Fluorescence in Biosensing Applications 121<br /></b><i>Ruoyun Lin, Chenxi Li, Yang Chen, Feng Liu, and Na Li</i></p> <p>7.1 Introduction 121</p> <p>7.2 Substrates 121</p> <p>7.3 Distance Control 128</p> <p>7.4 Summary and Outlook 132</p> <p><b>8 Long?–Range Metal?–Enhanced Fluorescence 137<br /></b><i>Ofer Kedem</i></p> <p>8.1 Introduction 137</p> <p>8.2 Collective Effects in NP Films 138</p> <p>8.3 Investigations of Metal–Fluorophore Interactions at Long Separations 138</p> <p>8.3.1 Distance?–Dependent Fluorescence of Tris(bipyridine)ruthenium(II) on Supported Plasmonic Gold NP Ensembles 138</p> <p>8.3.2 Lifetime 139</p> <p>8.3.3 Intensity 141</p> <p>8.3.4 Emission Wavelength and Linewidth 143</p> <p>8.4 Conclusions 146</p> <p><b>9 Evolution, Stabilization, and Tuning of Metal?–Enhanced Fluorescence in Aqueous Solution 151<br /></b><i>Jayasmita Jana, Mainak Ganguly, and Tarasankar Pal</i></p> <p>9.1 Introduction 151</p> <p>9.1.1 Coinage Metal Nanoparticles in Metal?–Enhanced Fluorescence 153</p> <p>9.2 Metal?–Enhanced Fluorescence in Solution Phase 154</p> <p>9.2.1 Metal?–Enhanced Fluorescence from Metal(0) in Solution 154</p> <p>9.3 Applications of Metal?–Enhanced Fluorescence 169</p> <p>9.3.1 Sensing of Biomolecules 169</p> <p>9.3.2 Sensing of Toxic Metals 171</p> <p>9.4 Conclusion 174</p> <p><b>10 Distance and Location?–Dependent Surface Plasmon Resonance?–Enhanced Photoluminescence in Tailored Nanostructures 179<br /></b><i>Saji Thomas Kochuveedu and Dong Ha Kim</i></p> <p>10.1 Introduction 179</p> <p>10.2 Effect of SPR in PL 181</p> <p>10.2.1 Photoluminescence 181</p> <p>10.2.2 Enhancement of Emission by SPR 182</p> <p>10.2.3 Quenching of Emission by SPR 184</p> <p>10.3 Effect of SPR in FRET 185</p> <p>10.3.1 FRET 185</p> <p>10.3.2 SPR?–Induced Enhanced FRET 188</p> <p>10.3.3 Effect of the Position, Concentration, and Size of Plasmonic Nanostructures in FRET System 189</p> <p>10.4 Conclusions and Outlook 191</p> <p><b>11 Fluorescence Quenching by Plasmonic Silver Nanoparticles 197<br /></b><i>M. Umadevi</i></p> <p>11.1 Metal Nanoparticles 197</p> <p>11.2 Fluorescence Quenching 197</p> <p>11.3 Mechanism behind Quenching 198</p> <p><b>12 AgOx Thin Film for Surface?–Enhanced Raman Spectroscopy 203<br /></b><i>Ming Lun Tseng, Cheng Hung Chu, Jie Chen, Kuang Sheng Chung, and Din Ping Tsai</i></p> <p>12.1 Introduction 203</p> <p>12.1.1 SERS on the Laser?–Treated AgOx Thin Film 203</p> <p>12.1.2 Annealed AgOx Thin Film for SERS 206</p> <p>12.2 Conclusion 206</p> <p><b>13 Plasmon?–Enhanced Two?–Photon Excitation Fluorescence and Biomedical Applications 211<br /></b><i>Taishi Zhang, Tingting Zhao, Peiyan Yuan, and Qing?–Hua Xu</i></p> <p>13.1 Introduction 211</p> <p>13.2 Metal–Chromophore Interactions 212</p> <p>13.3 Plasmon?–Enhanced One?–Photon Excitation Fluorescence 214</p> <p>13.4 Plasmon?–Enhanced Two?–Photon Excitation Fluorescence 215</p> <p>13.5 Conclusions and Outlook 220</p> <p><b>14 Fluorescence Biosensors Utilizing Grating?–Assisted Plasmonic Amplification 227<br /></b><i>Koji Toma, Mana Toma, Martin Bauch, Simone Hageneder, and Jakub Dostalek</i></p> <p>14.1 Introduction 227</p> <p>14.2 SPCE in Vicinity to Metallic Surface 227</p> <p>14.3 SPCE Utilizing SP Waves with Small Losses 230</p> <p>14.4 Nondiffractive Grating Structures for Angular Control of  SPCE 232</p> <p>14.5 Diffractive Grating Structures for Angular Control of SPCE 234</p> <p>14.6 Implementation of Grating?–Assisted SPCE to Biosensors 236</p> <p>14.7 Summary 237</p> <p><b>15 Surface Plasmon–?Coupled Emission: Emerging Paradigms and Challenges for Bioapplication 241<br /></b><i>Shuo?–Hui Cao, Yan?–Yun Zhai, Kai?–Xin Xie, and Yao?–Qun Li</i></p> <p>15.1 Introduction 241</p> <p>15.2 Properties of SPCE 242</p> <p>15.3 Current Developments of SPCE in Bioanalysis 243</p> <p>15.3.1 New Substrates Designing for Biochip 243</p> <p>15.3.2 Optical Switch for Biosensing 244</p> <p>15.3.3 Full?–Coupling Effect for Bioapplication 245</p> <p>15.3.4 Hot?–Spot Nanostructure?–Based Biosensor 248</p> <p>15.3.5 Imaging Apparatus for High?–Throughput Detection 249</p> <p>15.3.6 Waveguide Mode SPCE to Widen Detection Region 251</p> <p>15.4 Perspectives 252</p> <p><b>16 Plasmon?–Enhanced Luminescence with Shell?–Isolated Nanoparticles 257<br /></b><i>Sabrina A. Camacho, Pedro H. B. Aoki, Osvaldo N. Oliveira, Jr, Carlos J. L. Constantino, and Ricardo F. Aroca</i></p> <p>16.1 Introduction 257</p> <p>16.2 Synthesis of Shell?–Isolated Nanoparticles 259</p> <p>16.2.1 Nanosphere Au?–SHINs 259</p> <p>16.2.2 Nanorod Au?–SHINs 260</p> <p>16.3 Plasmon?–Enhanced Luminescence in Liquid Media 262</p> <p>16.4 Enhanced Luminescence on Solid Surfaces and Spectral Profile Modification 265</p> <p>16.4.1 SHINEF on Langmuir–Blodgett Films 266</p> <p><b>17 Controlled and Enhanced Fluorescence Using Plasmonic Nanocavities 271<br /></b><i>Gleb M. Akselrod, David R. Smith, and Maiken H. Mikkelsen</i></p> <p>17.1 Introduction to Plasmonic Nanocavities 271</p> <p>17.2 Summary of Fabrication 272</p> <p>17.3 Properties of the Nanocavity 273</p> <p>17.3.1 Nanocavity Resonances 273</p> <p>17.3.2 Tuning the Resonance 274</p> <p>17.3.3 Directional Scattering and Emission 276</p> <p>17.4 Theory of Emitters Coupled to Nanocavity 277</p> <p>17.4.1 Simulation of Nanocavity 278</p> <p>17.4.2 Enhancement in the Spontaneous Emission Rate 278</p> <p>17.5 Absorption Enhancement 280</p> <p>17.6 Purcell Enhancement 282</p> <p>17.7 Ultrafast Spontaneous Emission 286</p> <p>17.8 Harnessing Multiple Resonances for Fluorescence Enhancement 288</p> <p>17.9 Conclusions and Outlook 291</p> <p><b>18 Plasmonic Enhancement of UV Fluorescence 295<br /></b><i>Xiaojin Jiao, Yunshan Wang, and Steve Blair</i></p> <p>18.1 Introduction 295</p> <p>18.2 Plasmonic Enhancement 295</p> <p>18.3 Analytical Description of PE of Fluorescence 296</p> <p>18.4 Overview of Research on Plasmon?–Enhanced UV Fluorescence 297</p> <p>18.4.1 Material Selection 297</p> <p>18.4.2 Structure Choice 301</p> <p>18.4.3 Experimental Measurement 303</p> <p>18.5 Summary 306</p> <p>Index 309</p>
<p><b> Chris D. Geddes, PhD, FRSC,</b> is a professor at the University of Maryland, Baltimore County, USA, where he is the director of the Institute of Fluorescence, and the editor-in-chief of both the Journal of Fluorescence and the Plasmonics journal. With more than 250 papers, 35 books, and >100 patents to his credit, he has extensive expertise in fluorescence spectroscopy, particularly in fluorescence sensing and metal–fluorophore interactions.
<p><b> Explains the principles and current thinking behind plasmon-enhanced fluorescence </b> <p> Fluorescence-based plasmonics has already started to change the way both we use and think about fluorescence spectroscopy today and is in stark contrast to how we have all traditionally utilize fluorescence. It has been used to develop numerous approaches for imaging and sensing in the analytical sciences, to synthesize fluorophores that are fluorescence sensitive to a vast array of analytes or biomolecules, and even used to develop highly sensitive and ultrafast instrumentation to undertake the most challenging physiological/cellular measurements. <p> Much of the work on fluorescent-based plasmonics has focused on using surface plasmons and their associated e-fields for enhancing fluorescence signatures. This has been referred to as surface-enhanced fluorescence, plasmon-enhanced fluorescence, and, most popularly, metal-enhanced fluorescence (MEF). Surface plasmons have been used to enhance the surface sensitivity of several spectroscopic measurements including fluorescence and Raman scattering. SPR reflectivity measurements can be used to detect molecular adsorption, such as polymers, DNA, or proteins. <p><i> Surface Plasmon Enhanced, Coupled And Controlled Fluorescence</i> explains the principles behind metal–fluorophore interactions and details how this important discovery can be used in life sciences to detect and quantify DNA, proteins, and RNA more quickly and accurately. The applications in this book are likely to have profound implications in biosciences and promise to change the way we both think about and use fluorescence. <p> Containing contributions from the world's leading scientists in the area of fluorescence and plasmonics, <i>Surface Plasmon Enhanced, Coupled And Controlled Fluorescence</i> features: <ul> <li>Current developments in surface plasmon-enhanced, surface plasmon-coupled, and surface plasmon-controlled fluorescence</li> <li>Methods used to synthesize and characterize both surfaces and nanoparticles for MEF</li> <li>Comprehensive collection of current trends and thoughts and emerging hot aspects in the field of metal–fluorophore interactions and applications</li> <li>Coverage on cutting-edge research leading to the development of new equipment</li> </ul> <br> <p> This volume is an essential reference material for any lab working in the field of fluorescence and plasmonics and other related areas. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of plasmonics and fluorescence will find it an invaluable resource.

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €